\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Complete characterization of the first descent point distribution for the k-error linear complexity of 2n-periodic binary sequences

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, a new constructive approach of determining the first descent point distribution for the $k$-error linear complexity of $2^n$-periodic binary sequences is developed using the sieve method and Games-Chan algorithm. First, the linear complexity for the sum of two sequences with the same linear complexity and minimum Hamming weight is completely characterized and this paves the way for the investigation of the $k$-error linear complexity. Second we derive a full representation of the first descent point spectrum for the $k$-error linear complexity. Finally, we obtain the complete counting functions on the number of $2^n$-periodic binary sequences with given $2^m$-error linear complexity and linear complexity $2^n-(2^{i_1}+2^{i_2}+···+2^{i_m})$, where $0≤ i_1<i_2<···<i_m<n. $ In summary, we depict a full picture on the first descent point of the $k$-error linear complexity for $2^n$-periodic binary sequences and this will help us construct some sequences with requirements on linear complexity and $k$-error complexity.

    Mathematics Subject Classification: Primary: 94A55, 94A60; Secondary: 11B50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. S. Ding, Lower bounds on the weight complexity of cascaded binary sequences, in Proc. Auscrypt'90 Adv. Crypt. , Springer-Verlag, 1990, 39–43. doi: 10.1007/BFb0030350.
    [2] C. S. Ding, G. Z. Xiao and W. J. Shan, The Stability Theory of Stream Ciphers, SpringerVerlag, Berlin, 1991, 85–88. doi: 10.1007/3-540-54973-0.
    [3] T. EtzionN. KalouptsidisN. KolokotronisK. Limniotis and K. G. Paterson, Properties of the error linear complexity spectrum, IEEE Trans. Inf. Theory, 55 (2009), 4681-4686.  doi: 10.1109/TIT.2009.2027495.
    [4] F. Fu, H. Niederreiter and M. Su, The characterization of 2n-periodic binary sequences with fixed 1-error linear complexity, in SETA 2006 (eds. G. Gong et al), Springer, 2006, 88–103. doi: 10.1007/11863854_8.
    [5] R. A. Games and A. H. Chan, A fast algorithm for determining the complexity of a binary sequence with period $2^n$, IEEE Trans. Inf. Theory, 29 (1983), 144-146.  doi: 10.1109/TIT.1983.1056619.
    [6] Y. K. HanJ. H. Chung and K. Yang, On the $k$-error linear complexity of $p^m$-periodic binary sequences, IEEE Trans. Inf. Theory, 53 (2007), 2297-2304.  doi: 10.1109/TIT.2007.896863.
    [7] T. KaidaS. Uehara and K. Imamura, An algorithm for the $k$-error linear complexity of sequences over GF($p^m$) with period $p^n$, $p$ a prime, Inf. Comput., 151 (1999), 134-147.  doi: 10.1006/inco.1998.2768.
    [8] R. Kavuluru, Characterization of $2^n$-periodic binary sequences with fixed 2-error or 3-error linear complexity, Des. Codes Crypt., 53 (2009), 75-97.  doi: 10.1007/s10623-009-9295-x.
    [9] N. KolokotronisP. Rizomiliotis and N. Kalouptsidis, Minimum linear span approximation of binary sequences, IEEE Trans. Inf. Theory, 48 (2002), 2758-2764.  doi: 10.1109/TIT.2002.802621.
    [10] K. KurosawaF. SatoT. Sakata and W. Kishimoto, A relationship between linear complexity and $k$-error linear complexity, IEEE Trans. Inf. Theory, 46 (2000), 694-698.  doi: 10.1109/18.825845.
    [11] A. Lauder and K. Paterson, Computing the error linear complexity spectrum of a binary sequence of period $2^n$, IEEE Trans. Inf. Theory, 49 (2003), 273-280.  doi: 10.1109/TIT.2002.806136.
    [12] W. Meidl, How many bits have to be changed to decrease the linear complexity?, Des. Codes Crypt., 33 (2004), 109-122.  doi: 10.1023/B:DESI.0000035466.28660.e9.
    [13] W. Meidl, On the stablity of $2^n$-periodic binary sequences, IEEE Trans. Inf. Theory, 51 (2005), 1151-1155.  doi: 10.1109/TIT.2004.842709.
    [14] F. Pi and W. F. Qi, The 4-error linear complexity of $2^n$-periodic binary sequences with linear complexity $2^n-2^m-2^l$, ACTA Electr. Sin. (in Chinese), 39 (2011), 2914-2920. 
    [15] R. A. Rueppel, Analysis and Design of Stream Ciphers Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-82865-2.
    [16] M. Stamp and C. F. Martin, An algorithm for the $k$-error linear complexity of binary sequences with period $2^n$, IEEE Trans. Inf. Theory, 39 (1993), 1398-1401.  doi: 10.1109/18.243455.
    [17] G. Z. XiaoS. M. WeiK. Y. Lam and K. Imamura, A fast algorithm for determining the linear complexity of a sequence with period $p^n$ over $GF(q)$, IEEE Trans. Inf. Theory, 46 (2000), 2203-2206.  doi: 10.1109/18.868492.
    [18] J. Q. Zhou, On the $k$-error linear complexity of sequences with period 2$p^n$ over GF(q), Des. Codes Crypt., 58 (2011), 279-296.  doi: 10.1007/s10623-010-9379-7.
    [19] J. Q. Zhou and W. Q. Liu, The $k$-error linear complexity distribution for $2^n$-periodic binary sequences, Des. Codes Crypt., 73 (2014), 55-75.  doi: 10.1007/s10623-013-9805-8.
    [20] J. Q. Zhou, J. Liu and W. Q. Liu, The 4-error linear complexity distribution for $2^n$-periodic binary sequences 2013, preprint, arXiv: 1310.0132 doi: 10.1007/s10623-013-9805-8.
    [21] J. Q. Zhou, W. Q. Liu and G. L. Zhou, Cube theory and stable k-error linear complexity for periodic sequences, in Inscrypt 2013, Springer, 70–85. doi: 10.1007/978-3-319-12087-4_5.
    [22] F. X. Zhu and W. F. Qi, The 2-error linear complexity of $2^n$-periodic binary sequences with linear complexity $2^n$-1, J. Electronics (China), 24 (2007), 390-395.  doi: 10.1007/s11767-006-0005-9.
  • 加载中
SHARE

Article Metrics

HTML views(1923) PDF downloads(186) Cited by(0)

Access History

Other Articles By Authors

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint