This issue
Previous Article
Parameters of LCD BCH codes with two lengths
Next Article
On self-orthogonal designs and codes related to Held's simple group
A connection between sumsets and covering codes of a module
-
Abstract
In this work we focus on a connection between sumsets and covering codes in an arbitrary finite module. For this purpose, bounds on a new problem on sumsets are obtained from well-known results of additive number theory, namely, the Cauchy-Davenport theorem, the Vosper theorem and a theorem due to Hamidoune-Rødseth. As an application, the approach is able to extend the Blokhuis-Lam theorems and a construction of covering codes by Honkala to an arbitrary module.
-
Keywords:
- Sumset,
- arithmetic progression,
- covering code,
- code over a ring,
- matrix method,
- bound on code.
Mathematics Subject Classification: Primary: 11T71; Secondary: 11P70, 13M99, 94B75.Citation: -
-
References
[1] A. Blokhuis and C. W. H. Lam, More covering by rook domains, J. Combin. Theory Ser. A, 36 (1984), 240-244. doi: 10.1016/0097-3165(84)90010-4. [2] W. A. Carnielli, On covering and coloring problems for rook domains, Discrete Math., 57 (1985), 9-16. doi: 10.1016/0012-365X(85)90152-9. [3] W. A. Carnielli, Hyper-rook domain inequalities, Stud. Appl. Math., 82 (1990), 59-69. doi: 10.1002/sapm199082159. [4] A. Cauchy, Recherches sur les nombres, Oeuvres completes, (2009), 39-63. doi: 10.1017/CBO9780511702501.004. [5] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland, Amsterdam, 1997. [6] H. Davenport, On the addition of residue classes, J. London Math. Soc., 10 (1935), 30-32. [7] O. J. N. T. N. dos Santos and E. L. Monte Carmelo, Invariant sets under linear operator and covering codes over modules, Linear Algebra Appl., 444 (2014), 42-52. doi: 10.1016/j.laa.2013.11.034. [8] P. Erdős, Problems and Results on Combinatorial Number Theory Ⅲ, in Lecture Notes in Math., Springer- Verlag, Berlin, (1977), 43-72. [9] Y. O. Hamidoune and Ø. J. Rødseth, An inverse theorem mod $p$, Acta Arithmetica, 92 (2000), 251-262. doi: 10.4064/aa-92-3-251-262. [10] I. Honkala, On lengthening of covering codes, Discrete Math., 106/107 (1992), 291-295. doi: 10.1016/0012-365X(92)90556-U. [11] H. J. L. Kamps and J. H. van Lint, A covering problem, in Combinatorial theory and its applications Ⅱ (Colloquia Mathematica Societatis Jànos Bolyai), North-Holland, Amsterdam, (1970), 679-685. [12] I. N. Nakaoka and O. J. N. T. N. dos Santos, A covering problem over finite rings, Appl. Math. Lett., 23 (2010), 322-326. doi: 10.1016/j.aml.2009.09.022. [13] I. N. Nakaoka, E. L. Monte Carmelo and O. J. N. T. N. dos Santos, Sharp covering of a module by cyclic submodules, Linear Algebra Appl., 458 (2014), 387-402. doi: 10.1016/j.laa.2014.06.019. [14] M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4757-3845-2. [15] T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105 Cambridge University Press, Cambridge, 2006. doi: 10.1017/CBO9780511755149. [16] O. Taussky and J. Todd, Covering theorems for groups, Ann. Soc. Polonaise Math., 21 (1948), 303-305. [17] J. H. van Lint Jr., Covering Radius Problems, M. Sc. Thesis, Eindhoven University of Technology, The Netherlands, 1988. [18] G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc., 31 (1956), 200-205. doi: 10.1112/jlms/s1-31.2.200. -
Access History