This issue
Previous Article
A spectral characterisation of $ t $ -designs and its applications
Next Article
Galois extensions, positive involutions and an application to unitary space-time coding
A conjecture on permutation trinomials over finite fields of characteristic two
-
Abstract
In this paper, by analyzing the quadratic factors of an $ 11 $-th degree polynomial over the finite field $ {\mathbb F}_{2^n} $, a conjecture on permutation trinomials over $ {\mathbb F}_{2^n}[x] $ proposed very recently by Deng and Zheng is settled, where $ n = 2m $ and $ m $ is a positive integer with $ \gcd(m,5) = 1 $.
-
Keywords:
- Finite field,
- Niho exponent,
- permutation trinomial.
Mathematics Subject Classification: Primary: 05A05; Secondary: 11T06, 11T55.Citation: -
References
[1] H. Deng and D. Zheng, More classes of permutation trinomials with Niho exponents, Cryptogr. Commun., 11 (2019), 227-236. doi: 10.1007/s12095-018-0284-7. [2] C. Ding and T. Helleseth, Optimal ternary cyclic codes from monomials, IEEE Trans. Inf. Theory, 59 (2013), 5898-5904. doi: 10.1109/TIT.2013.2260795. [3] C. Ding, L. Qu, Q. Wang, J. Yuan and P. Yuan, Permutation trinomials over finite fields with even characteristic, SIAM Journal on Discrete Mathematics, 29 (2015), 79-92. doi: 10.1137/140960153. [4] C. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Comb. Theory, Ser. A, 113 (2006), 1526-1535. doi: 10.1016/j.jcta.2005.10.006. [5] R. Gupta and R. K. Sharma, Some new classes of permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 41 (2016), 89-96. doi: 10.1016/j.ffa.2016.05.004. [6] X. Hou, A class of permutation trinomials over finite fields, Acta Arith., 162 (2014), 51-64. doi: 10.4064/aa162-1-3. [7] X. Hou, Determination of a type of permutation trinomials over finite fields Ⅱ, Finite Fields Appl., 35 (2015), 16-35. doi: 10.1016/j.ffa.2015.03.002. [8] X. Hou, Permutation polynomials over finite fields - a survey of recent advances, Finite Fields Appl., 32 (2015), 82-119. doi: 10.1016/j.ffa.2014.10.001. [9] Y. Laigle-Chapuy, Permutation polynomial and applications to coding theory, Finite Fields Appl., 13 (2007), 58-70. doi: 10.1016/j.ffa.2005.08.003. [10] K. Li, L. Qu and X. Chen, New classes of permutation binomials and permutation trinomials over finite fields, Finite Fields Appl., 43 (2017), 69-85. doi: 10.1016/j.ffa.2016.09.002. [11] K. Li, L. Qu, C. Li and S. Fu, New permutation trinomials constructed from fractional polynomials, Acta Arith., 183 (2018), 101-116. doi: 10.4064/aa8461-11-2017. [12] N. Li and T. Helleseth, Several classes of permutation trinomials from Niho exponents, Cryptogr. Commun., 9 (2017), 693-705. doi: 10.1007/s12095-016-0210-9. [13] N. Li and T. Helleseth, New permutation trinomials from Niho exponents over finite fields with even characteristic, Cryptogr. Commun., 11 (2019), 129-136. doi: 10.1007/s12095-018-0321-6. [14] N. Li and X. Zeng, A survey on the applications of Niho exponents, Cryptogr. Commun., 2018, 1–40. doi: 10.1007/s12095-018-0305-6. [15] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. Cambridge University Press, 1997. [16] J. Ma, T. Zhang, T. Feng and G. Ge, Some new results on permutation polynomials over finite fields, Des. Codes Cryptogr., 83 (2017), 425-443. doi: 10.1007/s10623-016-0236-1. [17] Y. H. Park and J. B. Lee, Permutation polynomials and group permutation polynomials, Bull. Austral. Math. Soc., 63 (2001), 67-74. doi: 10.1017/S0004972700019110. [18] R. L. Rivest, A. Shamir and L. M. Adelman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120-126. doi: 10.1145/359340.359342. [19] J. Schwenk and K. Huber, Public key encryption and digital signatures based on permutation polynomials, Electron. Lett., 34 (1998), 759-760. doi: 10.1049/el:19980569. [20] Z. Tu and X. Zeng, Two classes of permutation trinomials with Niho exponents, Finite Fields Appl., 53 (2018), 99-112. doi: 10.1016/j.ffa.2018.05.007. [21] Z. Tu, X. Zeng and T. Helleseth, New permutation quadrinomials over $\mathbb{F}_{2^{2m}}$, Finite Fields Appl., 50 (2018), 304-318. doi: 10.1016/j.ffa.2017.11.013. [22] Z. Tu, X. Zeng, C. Li and T. Helleseth, A class of new permutation trinomials, Finite Fields Appl., 50 (2018), 178-195. doi: 10.1016/j.ffa.2017.11.009. [23] Z. Tu, X. Zeng and L. Hu, Several classes of complete permutation polynomials, Finite Fields Appl., 25 (2014), 182-193. doi: 10.1016/j.ffa.2013.09.007. [24] Z. Tu, X. Zeng and Y. Jiang, Two classes of permutation polynomials having the form $(x^{2^m}+x+\delta)^s+x$, Finite Fields Appl., 31 (2015), 12-24. doi: 10.1016/j.ffa.2014.09.005. [25] Q. Wang, Cyclotomic mapping permutation polynomials over finite fields, Lecture Notes in Comput. Sci., 4893 (2007), 119-128. doi: 10.1007/978-3-540-77404-4_11. [26] D. Wu, P. Yuan, C. Ding and Y. Ma, Permutation trinomials over $\mathbb{F}_{2^m}$, Finite Fields Appl., 46 (2017), 38-56. doi: 10.1016/j.ffa.2017.03.002. [27] Z. Zha, L. Hu and S. Fan, Further results on permutation trinomials over finite fields with even characteristic, Finite Fields Appl., 45 (2017), 43-52. doi: 10.1016/j.ffa.2016.11.011. [28] M. Zieve, On some permutation polynomials over $\mathbb{F}_q$ of the form $x^rh(x^{\frac{q-1}{d}})$, Proc. Amer. Math. Soc., 137 (2009), 2209-2216. doi: 10.1090/S0002-9939-08-09767-0. -
Access History