This issue
Previous Article
Self-orthogonal codes from equitable partitions of distance-regular graphs
Next Article
On Polynomial Modular Number Systems over $ \mathbb{Z}/{p}\mathbb{Z} $
On the polycyclic codes over $ \mathbb{F}_q+u\mathbb{F}_q $
-
Abstract
In this article, we mainly study the polycyclic codes over $ S $, where $ S = \mathbb{F}_q+u\mathbb{F}_q $ with $ u^2 = u $. First, the annihilator self-dual codes, annihilator self-orthogonal codes and annihilator $ {{{\rm{LCD}}}} $ codes over $ S $ are also introduced and studied. Next, we define a Gray map from $ S^n $ to $ \mathbb{F}^{2n}_q $ and investigate the structure properties of polycyclic codes over $ S $ using the decomposition method. The Hamming distances of the Gray images are also determined by their decompositions. Finally, we obtain some good codes based on the results.
-
Keywords:
- Semi-simple rings,
- polycyclic codes,
- Hamming distances,
- Gray maps,
- annihilator dual codes.
Mathematics Subject Classification: Primary: 94B15; Secondary: 94B05.Citation: -
-
Table 1.
Codes Generators Parameters $C^{\circ}$ Codes Generators Parameters $C^{\circ}$ $C_1$ $0$ $[7,0,0] $ $C_{12}$ $C_{7}$ $g_1g_3$ $[7,3,4]$ $C_6$ $C_2$ $g_1$ $[7,6,2]$ $C_{11}$ $C_{8}$ $g_2g_3$ $[7,2,3]$ $C_5$ $C_3$ $g_2$ $[7,5,2]$ $C_{10}$ $C_{9}$ $g_1^2g_2$ $[7,3,2]$ $C_4$ $C_4$ $g_3$ $[7,4,3]$ $C_{9}$ $C_{10}$ $g_1^2g_3$ $[7,2,4]$ $C_3$ $C_5$ $g_1^2$ $[7,5,2]$ $C_{8}$ $C_{11}$ $g_1g_2g_3$ $[7,1,4]$ $C_2$ $C_6$ $g_1g_2$ $[7,4,2]$ $C_{7}$ $C_{12}$ $1$ $[7,7,1]$ $C_1$ Table 2.
Codes generators $\Phi(C)$ $C^{\circ}$ Codes generators $\Phi(C)$ $C^{\circ}$ $C_1$ $0$ $[8,0,0] $ $C_{16}$ $C_{9}$ $Ag_2$ $[8,1,3]$ $C_8$ $C_2$ $Bf_1$ $[8,3,2]$ $C_{15}$ $C_{10}$ $Ag_2+Bf_1$ $[8,4,2]$ $C_7$ $C_3$ $Bf_2$ $[8,1,3]$ $C_{14}$ $C_{11}$ $Ag_2+Bf_2$ $[8,2,3]$ $C_6$ $C_4$ $B$ $[8,4,1]$ $C_{13}$ $C_{12}$ $Ag_2+B$ $[8,5,1]$ $C_5$ $C_5$ $Ag_1$ $[8,3,2]$ $C_{12}$ $C_{13}$ $A$ $[8,4,1]$ $C_4$ $C_6$ $Ag_1+Bf_1$ $[8,6,2]$ $C_{11}$ $C_{14}$ $A+Bf_1$ $[8,7,1]$ $C_3$ $C_7$ $Ag_1+Bf_2$ $[8,4,2]$ $C_{10}$ $C_{15}$ $A+Bf_2$ $[8,5,1]$ $C_2$ $C_8$ $Ag_1+B$ $[8,7,1]$ $C_{9}$ $C_{16}$ $A+B$ $[8,8,1]$ $C_1$ -
References
[1] A. Alahmadi, S. Dougherty, A. Leroy and P. SolÉ, On the duality and the direction of polycyclic codes, Adv. Math. Commun., 10 (2016), 921-929. doi: 10.3934/amc.2016049. [2] A. Alahmadi, C. Güneri, H. Shoaib and P. Solé, Long quasi-polycyclic $t$-CIS codes, Adv. Math. Commun., 12 (2018), 189-198. doi: 10.3934/amc.2018013. [3] T. Blackford, The Galois variance of constacyclic codes, Finite Fields Appl., 47 (2017), 286-308. doi: 10.1016/j.ffa.2017.06.001. [4] M. A. de Boer, Almost MDS codes, Desi., Codes Cryptogr., 9 (1996), 143-155. doi: 10.1007/BF00124590. [5] S. T. Dougherty, Algebrais Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2. [6] A. Fotue-Tabue, E. Martínez-Moro and J. T. Blackford, On polycyclic codes over a finite chain ring, Adv. Math. Commun., 14 (2020), 445-466. doi: 10.3934/amc.2020028. [7] J. Gao, F. Ma and F.-W. Fu, Skew constacyclic codes over the ring $\mathbb{F}_q+v\mathbb{F}_q$, Appl. Comput. Math., 16 (2017), 286-295. [8] J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Dev., 4 (1960), 532-542. doi: 10.1147/rd.45.0532. [9] X.-D. Hou, S. R. López-Permouth and B. Parra-Avila, Rational power series sequential codes and periodicity of sequences, J. Pure Appl. Algebra, 213 (2009), 1157-1169. doi: 10.1016/j.jpaa.2008.11.011. [10] W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge Univ. Press, 2003. doi: 10.1017/CBO9780511807077. [11] S. R. López-Permouth, H. Özadam, F. Özbudak and S. Szabo, Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes, Finite Fields Appl., 19 (2013), 16-38. doi: 10.1016/j.ffa.2012.10.002. [12] S. R. López-Permouth, B. R. Parra-Avila and S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun., 3 (2009), 227-234. doi: 10.3934/amc.2009.3.227. [13] M. Matsuoka, $\theta$-Polycyclic codes and $\theta$-sequential codes over finite fields, Int. J. Algebra, 5 (2011), 65-70. [14] M. Özen and H. İnce, MDS codes from polycyclic codes over finite fields, Journal of Science and Technology, 7 (2017), 55-78. [15] M. Shi, X. Li, Z. Sepasdar and P. Solé, Polycyclic codes as invariant subspaces, Finite Fields Appl., 68 (2020), 101760, 14 pp. doi: 10.1016/j.ffa.2020.101760. [16] M. Shi, H. Zhu, L. Qian, L. Sok and P. Solé, On self-dual and LCD double circulant and double negacirculant codes over $\mathbb{F}_q +u\mathbb{F}_q$, Cryptogr. Commun., 12 (2020), 53-70. doi: 10.1007/s12095-019-00363-9. -
Access History