\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

New bound and constructions for geometric orthogonal codes and geometric 180-rotating orthogonal codes

  • *Corresponding author: Zihong Tian

    *Corresponding author: Zihong Tian

The first author is supported by IPFHB under Grant CXZZBS2021067. The second author is supported by the Key R & D Program of Guangdong province under Grant 2020B030304002 and NSFC under Grant 11901210. The last author is supported by NSFC under Grant 11871019

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • Geometric orthogonal codes (GOCs) and geometric 180-rotating orthogonal codes (RGOCs) were introduced by Doty and Winslow for their application in DNA origami. So far, only a few classes of GOCs and one class of RGOCs are known. In this paper, we provide the combinatorial descriptions, present the upper bounds for the number of codewords and establish some recursive constructions for GOCs and RGOCs, respectively. As a consequence, the number of codewords in an optimal $ (n\times m, k, k-1) $-GOC and $ (n\times m, k, $ $ k-1) $-RGOC are determined for any positive integers $ n, m $ and $ k $. Some infinite families of $ (n\times m, k, \lambda) $-GOCs and $ (n\times m, k, \lambda) $-RGOCs for $ \lambda<k-1 $ are also obtained.

    Mathematics Subject Classification: Primary: 05B10, 05B40; Secondary: 94C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Some existential results of $ (n\times m, k, \lambda) $-GOCs

    Parameters Conditions Size Reference
    $ (n \times m, 3,1)$ $n\equiv0\pmod {3}, m\equiv3, 6\pmod {12}$
    or $m\equiv0\pmod {3}, n\equiv3, 6\pmod {12}$
    $(n\times m, 3, 1)$
    or $m\equiv0\pmod {3}, n\equiv3, 6\pmod {12}$
    or $m\equiv0\pmod {3}, n\equiv3, 6\pmod {12}$
    $\frac{2nm-n-m}{3}-1$ (optimal) [5,30]
    otherwise $\lfloor\frac{2nm-n-m}{3}\rfloor$ (optimal)
    $(n\times m, 3, 2)$ $\Phi(n\times m, 3, 2)$ (optimal) Theorem 3.5
    $(n\times m, 4, 1)$ $n, m \equiv1\pmod {6}, n, m\leq6001$ and $n, m\neq13, 19$ $\frac{2nm-n-m}{6}$ (optimal) Lemma 4.7
    $(n\times m, 4, 1)$ $n \equiv1\pmod {6}, n\leq6001, n\neq13, 19$ and $m\geq4, m\not\equiv2\pmod {4}$ $\frac{m(n-1)}{6}$ Corollary 4.19
    $(2^x\times 2^y, 4, 2)$ $n\geq3$ and $n=x+y$ $2*J(2^{n}, 4, 2)$ Corollary 4.14
    $(2^n\times m, 4, 2)$ $n\geq3$ $2m^2*J(2^n, 4, 2)$ Corollary 4.20
    $(n\times m, 4, 3)$ $\Phi (n\times m, 4, 3)$ (optimal) Theorem 3.5
     | Show Table
    DownLoad: CSV

    Table 2.  Some existential results of $ (n\times m, k, \lambda) $-RGOCs

    Parameters Conditions Size Reference
    $(n\times m, 3, 2)$ $\Psi(n\times m, 3, 2)$ (optimal) Theorem 3.13
    $(n\times m, 4, 2)$ $n \equiv1\pmod {6}, n\leq6001, n\neq13, 19$ $\frac{m^2(n-1)}{6}$ Corollary 4.23
    $(n\times m, 4, 3)$ $\Psi(n\times m, 4, 3)$ (optimal) Theorem 3.13
     | Show Table
    DownLoad: CSV
  • [1] T. Alderson and K. Mellinger, Geometric constructions of optimal optical orthogonal codes, Adv. Math. Commun., 2 (2008), 451-467.  doi: 10.3934/amc.2008.2.451.
    [2] T. Alderson and K. Mellinger, Families of optimal OOCs with $\lambda = 2$, IEEE Trans Inform. Theory, 54 (2008), 3722-3724.  doi: 10.1109/TIT.2008.926394.
    [3] J. Bao and L. Ji, The completion determination of optimal $(3, 4)$-packings, Des. Codes Cryptogr., 77 (2015), 217-229.  doi: 10.1007/s10623-014-0001-2.
    [4] R. Bose and K. Bush, Orthogonal arrays of strength two and three, Ann. Math. Statist., 23 (1952), 508-524.  doi: 10.1214/aoms/1177729331.
    [5] Y. CheeH. KiahS. Ling and H. Wei, Geometric orthogonal codes of size larger than optical orthogonal codes, IEEE Trans. Inform. Theory, 64 (2018), 2883-2895.  doi: 10.1109/TIT.2017.2788140.
    [6] G. Chen, Constructions of Mixed Orthogonal Arrays, Ph.D thesis, Hebei Normal University, 2014.
    [7] J. ChenD. Wu and Y. Miao, Bounds and constructions for $(v, W, 2, Q)$-OOCs, Discrete Math., 328 (2014), 16-22.  doi: 10.1016/j.disc.2014.03.028.
    [8] W. Chu and C. Colbourn, Optimal $(v, 4, 2)$-OOC of small orders, Discrete Math., 279 (2004), 163-172.  doi: 10.1016/S0012-365X(03)00266-8.
    [9] W. Chu and C. Colbourn, Recursive constructions for optimal $(n, 4, 2)$-OOCs, J. Combin. Des., 12 (2004), 333-345.  doi: 10.1002/jcd.20003.
    [10] F. ChungJ. Salehi and V. Wei, Optical orthogonal codes: design, analysis, and applications, IEEE Trans. Inform. Theory, 35 (1989), 595-604.  doi: 10.1109/18.30982.
    [11] M. Colbourn and C. Colbourn, Recursive construction for cyclic block design, J. Statist. Plann. Inference, 10 (1984), 97-103.  doi: 10.1016/0378-3758(84)90035-1.
    [12] D. Doty and A. Winslow, Design of geometric molecular bonds, IEEE Trans. Mol. Biol. Multi-Scale Commun., 3 (2017), 13-23. 
    [13] A. Evans, On orthogonal orthomorphisms of cyclic and non-abelian groups. II., J. Combin. Des., 15 (2010), 195-209.  doi: 10.1002/jcd.20138.
    [14] T. FengL. Wang and X. Wang, Optimal $2$-D $(n\times m, 3, 2, 1)$-optical orthogonal codes and related equi-difference conflict avoiding codes, Des. Codes Cryptogr., 87 (2019), 1499-1520.  doi: 10.1007/s10623-018-0549-3.
    [15] G. Ge, On $(g, 4;1)$-difference matrices, Discrete Math., 301 (2005), 164-174.  doi: 10.1016/j.disc.2005.07.004.
    [16] G. GeY. Miao and X. Sun, Perfect difference families, perfect difference matrices, and related combinatorial structures, J. Combin. Des., 18 (2010), 415-449.  doi: 10.1002/jcd.20259.
    [17] T. GerlingK. WagenbauerA. Neuner and H. Dietz, Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components, Science, 347 (2015), 1446-1452. 
    [18] A. Hedayat, N. Slone and J. Stufken, Orthogonal Arrays, Springer, NewYork, 1999. doi: 10.1007/978-1-4612-1478-6.
    [19] A. HedayatJ. Stufken and G. Su, On difference schemes and orthogonal arrays of strength $t$, J. Statist. Plann. Inference, 56 (1996), 307-324.  doi: 10.1016/S0378-3758(96)00026-2.
    [20] Y. Huang and Y. Chang, The size of optimal $(n, 4, \lambda, 3)$ optical orthogonal codes, Discrete Math., 312 (2012), 3128-3139.  doi: 10.1016/j.disc.2012.07.007.
    [21] L. JiB. DingX. Wang and G. Ge, Asymptotically optimal optical orthogonal signature pattern codes, IEEE Trans. Inform. Theory, 64 (2018), 5419-5431.  doi: 10.1109/tit.2017.2787593.
    [22] J. JiangD. Wu and P. Fan, General constructions for $(v, 4, 1)$ optical orthogonal codes via perfect difference families, IEICE T. Fund. Electr., 95 (2012), 1921-1925. 
    [23] S. Johnson, A new upper bound for error-correcting codes, IEEE Trans. Inform. Theory, 8 (1962), 203-207.  doi: 10.1109/tit.1962.1057714.
    [24] K. Kitayama, Novel spatial spread spectrum based fiber optic CDMA networks for image transmission, IEEE J. Sel. Areas Commun., 12 (1994), 762-772. 
    [25] S. MaricO. Moreno and C. Corrada, Multimedia transmission in fiber-optic LANs using optical CDMA, J. Lightwave Technol., 14 (1996), 2149-2153. 
    [26] R. Pan and Y. Chang, Determination of the sizes of optimal $(m, n, k, \lambda, k-1)$-OOSPCs for $\lambda=k-1, k$, Discrete Math., 313 (2013), 1327-1337.  doi: 10.1016/j.disc.2013.02.019.
    [27] P. Rothemund, Using lateral capillary forces to compute by self-assembly, Nature, 440 (2006), 297-302. 
    [28] J. Salehi and C. Brackett, Code division multiple access techniques in optical fiber networks, IEEE Trans. Commun., 37 (1989), 824-842. 
    [29] N. Seeman, Nucleic acid junctions and lattices, J. Theor. Biol., 99 (1982), 237-247. 
    [30] L. WangL. CaiT. FengZ. Tian and X. Wang, Geometric orthogonal codes and geometrical difference packings, Des. Codes Cryptogr., 90 (2022), 1857-1879.  doi: 10.1007/s10623-022-01078-4.
    [31] S. Woo and P. Rothemund, Programmable molecular recognition based on the geometry of DNA nanostructures, Nature Chemistry, 3 (2011), 620-627. 
    [32] G. Yang and W. Kwong, Two-dimensional spatial signature patterns, IEEE Trans. Commun., 44 (1996), 184-191. 
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(1798) PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint