\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

On the number of $ t $-Lee-error-correcting codes

  • *Corresponding author: Nadja Willenborg

    *Corresponding author: Nadja Willenborg 

The first author is supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 899987

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider $ t $-Lee-error-correcting codes of length $ n $ over the residue ring $ \mathbb{Z}_{m} : = \mathbb{Z}/m\mathbb{Z} $ and determine upper and lower bounds on the number of $ t $-Lee-error-correcting codes. We use two different methods, namely estimating isolated nodes on bipartite graphs and the graph container method. The former gives density results for codes of fixed size and the latter for any size. This confirms some recent density results for linear Lee metric codes and provides new density results for nonlinear codes. To apply a variant of the graph container algorithm we also investigate some geometrical properties of the balls in the Lee metric.

    Mathematics Subject Classification: Primary: 94B25, 94B65; Secondary: 05C90.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Abiad and H. Koerts, On the independence number of graph products, Discussiones Mathematicae Graph Theory, (2022). doi: 10.7151/dmgt.2480.
    [2] T. L. Alderson and S. Huntemann, On maximum Lee distance codes, Journal of Discrete Mathematics, 2013, (2013). doi: 10.1155/2013/625912.
    [3] J. Antrobus and H. Gluesing-Luerssen, Maximal Ferrers diagram codes: Constructions and genericity considerations, IEEE Transactions on Information Theory, 65 (2019), 6204-6223.  doi: 10.1109/TIT.2019.2926256.
    [4] A. Ashikhmin and A. Barg, Minimal vectors in linear codes, IEEE Transactions on Information Theory, 44 (1998), 2010-2017.  doi: 10.1109/18.705584.
    [5] H. Astola, Algebraic and Combinatorial Methods for Error-Correcting Codes with Applications to Fault-Tolerant Logic, PhD thesis, Tampere University of Technology, 2015.
    [6] J. Astola, The theory of Lee-codes, Lappeenranta University of Technology, Department of Physics and Mathematics, Research Report, (1982).
    [7] J. BaloghA. Treglown and A. Z. Wagner, Applications of graph containers in the Boolean lattice, Random Structures and Algorithms, 49 (2016), 845-872.  doi: 10.1002/rsa.20666.
    [8] A. Barg and G. D. Forney, Random codes: Minimum distances and error exponents, IEEE Transactions on Information Theory, 48 (2002), 2568-2573.  doi: 10.1109/TIT.2002.800480.
    [9] A. Beimel, Secret-sharing schemes: A survey, Coding and Cryptology, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6639 (2011), 11-46.  doi: 10.1007/978-3-642-20901-7_2.
    [10] M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wassermann, Existence of-analogs of Steiner systems, Forum Math. Pi, 4 (2016), e7, 14 pp. doi: 10.1017/fmp.2016.5.
    [11] E. ByrneA.-L. HorlemannK. Khathuria and V. Weger, Density of free modules over finite chain rings, Linear Algebra and its Applications, 651 (2022), 1-25.  doi: 10.1016/j.laa.2022.06.013.
    [12] E. Byrne and A. Ravagnani, Partition-balanced families of codes and asymptotic enumeration in coding theory, Journal of Combinatorial Theory, Series A, 171 (2020), 105169, 39 pp. doi: 10.1016/j.jcta.2019.105169.
    [13] E. Byrne and V. Weger, Bounds in the Lee metric and optimal codes, Finite Fields and Their Applications, 87 (2023), 102151, 32 pp. doi: 10.1016/j.ffa.2022.102151.
    [14] A. R. CalderbankM. A. Herro and V. Telang, A multilevel approach to the design of DC-free line codes, IEEE Transactions on Information Theory, 35 (1989), 579-583.  doi: 10.1109/18.30980.
    [15] J. C. Y. Chiang and J. K. Wolf, On channels and codes for the Lee metric, Information and Control, 19 (1971), 159-173.  doi: 10.1016/S0019-9958(71)90791-1.
    [16] F. R. K. ChungJ. A. Salehi and V. K. Wei, Optical orthogonal codes: Design, analysis and applications, IEEE Transactions on Information Theory, 35 (1989), 595-604.  doi: 10.1109/18.30982.
    [17] C. J. Colbourn and R. Mathon, Steiner systems, Handbook of Combinatorial Designs, Chapman and Hall/CRC, (2006), 128-135.
    [18] D. DongN. Mani and Y. Zhao, On the number of error correcting codes, Combin. Probab. Comput., 32 (2023), 819-832.  doi: 10.1017/S0963548323000111.
    [19] E. N. Gilbert, A comparison of signalling alphabets, The Bell System Technical Journal, 31 (1952), 504-522.  doi: 10.1002/j.1538-7305.1952.tb01393.x.
    [20] H. Gluesing-Luerssen, On the sparseness of certain linear MRD codes, Linear Algebra and its Applications, 596 (2020), 145-168.  doi: 10.1016/j.laa.2020.03.006.
    [21] R. L. GrahamD. E. KnuthO. Patashnik and S. Liu, Concrete mathematics: A foundation for computer science, Computers in Physics, 3 (1989), 106-107. 
    [22] A. Gruica, A.-L. Horlemann, A. Ravagnani and N. Willenborg, Densities of codes of various linearity degrees in translation-invariant metric spaces, Designs, Codes and Cryptography, (2023), 1-29. doi: 10.1007/s10623-023-01236-2.
    [23] A. Gruica and A. Ravagnani, Common complements of linear subspaces and the sparseness of MRD codes, SIAM Journal on Applied Algebra and Geometry, 6 (2022), 79-110.  doi: 10.1137/21M1428947.
    [24] Q. A. NguyenL. Gyorfi and J. L. Massey, Constructions of binary constant-weight cyclic codes and cyclically permutable codes, IEEE Transactions on Information Theory, 38 (1992), 940-949.  doi: 10.1109/18.135636.
    [25] J.-L. Kim and S.-J. Kim, The 2-distance coloring of the Cartesian product of cycles using optimal Lee codes, Discrete Applied Mathematics, 159 (2011), 2222-2228.  doi: 10.1016/j.dam.2011.07.022.
    [26] D. J. Kleitman and K. J. Winston, The asymptotic number of lattices, Ann. Discrete Math., 6 (1980), 243-249.  doi: 10.1016/S0167-5060(08)70708-8.
    [27] D. J. Kleitman and K. J. Winston, On the number of graphs without 4-cycles, Discrete Mathematics, 41 (1982), 167-172.  doi: 10.1016/0012-365X(82)90204-7.
    [28] P. Loidreau, Asymptotic behaviour of codes in rank metric over finite fields, Designs, Codes and Cryptography, 71 (2014), 105-118.  doi: 10.1007/s10623-012-9716-0.
    [29] A. NeriA.-L. Horlemann-TrautmannT. Randrianarisoa and J. Rosenthal, On the genericity of maximum rank distance and Gabidulin codes, Designs, Codes and Cryptography, 86 (2018), 341-363.  doi: 10.1007/s10623-017-0354-4.
    [30] C. Ott, H. Liu and A. Wachter-Zeh, Geometrical properties of balls in sum-rank metric, WSA & SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding, (2023), 1-6.
    [31] J. Pierce, Limit distribution of the minimum distance of random linear codes, IEEE Transactions on Information Theory, 13 (1967), 595-599.  doi: 10.1109/tit.1967.1054053.
    [32] S. Ritterhoff, G. Maringer, S. Bitzer, V. Weger, P. Karl, T. Schamberger, J. Schupp and A. Wachter-Zeh, FuLeeca: A Lee-based signature scheme, Cryptology ePrint Archive, (2023), 56-83. doi: 10.1007/978-3-031-46495-9_4.
    [33] R. M. Roth, Introduction to coding theory, IET Communications, 47 (2006).
    [34] K. Schouhamer-Immink, Coding Techniques for Digital Recorders, Prentice Hall Professional Technical Reference, 1991.
    [35] K. Shiromoto, Singleton bounds for codes over finite rings, Journal of Algebraic Combinatorics, 12 (2000), 95-99.  doi: 10.1023/A:1008767703006.
    [36] P. Solé, On the parameters of codes for the Lee and modular distance, Discrete Mathematics, 89 (1991), 185-194.  doi: 10.1016/0012-365X(91)90366-A.
    [37] R. P. Stanley, Enumerative Combinatorics, volume 1, Second edition, Cambridge Stud. Adv. Math., 49. Cambridge University Press, Cambridge, 2012.
    [38] J. H. Van Lint, Introduction to Coding Theory, Grad. Texts in Math., 86. Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-642-58575-3.
    [39] R. R. Varšhamov, Estimate of the number of signals in error correcting codes, Docklady Akad. Nauk, SSSR, 117 (1957), 739-741. 
    [40] V. Weger, P. Santini, M. Battaglioni and A.-L. Horlemann, NP-complete problems for Lee metric codes, arXiv preprint, (2020), arXiv: 2002.12785.
    [41] J. Wood, The structure of linear codes of constant weight, Transactions of the American Mathematical Society, 354 (2002), 1007-1026.  doi: 10.1090/S0002-9947-01-02905-1.
    [42] A. D. Wyner and R. L. Graham, An upper bound on minimum distance for a $k$-ary code, Information and Control, 13 (1968), 47-52.  doi: 10.1016/S0019-9958(68)90779-1.
  • 加载中
SHARE

Article Metrics

HTML views(1481) PDF downloads(160) Cited by(0)

Access History

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint