Generalized Cayley operator with applications to Cayley inclusions in uniformly smooth Banach spaces
-
Abstract
In this paper, we present a generalized Cayley operator and a generalized Cayley inclusion problem $ (GCIP) $. A fixed point formulation of $ (GCIP) $ is established and using this an iterative algorithm is developed to show the existence and convergence of the solutions of $ (GCIP) $. We also establish the equivalence of the $ (GCIP) $ and generalized resolvent equation problem $ (GREP) $, and develop an iterative algorithm and some of its equivalent forms to approximate the solution of $ (GREP) $. To support our results, we construct a numerical example and convergence graphs using MATLAB programming.
-
Keywords:
- Cayley operator,
- Cayley inclusion,
- iterative algorithm,
- resolvent operator,
- uniformly smooth Banach space.
Mathematics Subject Classification: Primary: 49J40; Secondary: 47H09.Citation: -
Table 1. Computational results for different intial values of
$ u_0 $ No. of iterations $ u_0 = 1.0 $ $ u_n $ No. of iterations $ u_0 = 2 $ $ u_n $ No. of iterations $ u_0 = 4 $ $ u_n $ 1 1.0000 1 2.0000 1 4.0000 2 0.6938 2 1.3876 2 2.7752 3 0.4813 3 0.9627 3 1.9258 4 0.3339 4 0.6679 4 1.3361 5 0.2316 5 1.4633 5 0.9269 10 0.0371 10 0.0743 10 0.1489 15 0.0058 15 0.0118 15 0.0238 20 0.0008 20 0.0016 20 0.0037 25 0.0000 25 0.0001 25 0.0004 26 0.0000 26 0.0000 26 0.0002 27 0.0000 27 0.0000 27 0.0001 28 0.0000 28 0.0000 28 0.0000 29 0.0000 29 0.0000 29 0.0000 30 0.0000 30 0.0000 30 0.0000 Table 2. Computational results for different intial values of
$ s_0 $ $ s_0 = 1.0 $ $ s_0 = 4 $ No. of iterations $ u_n $ $ s_n $ No. of iterations $ u_n $ $ s_n $ 1 1.0000 1.0000 1 4.0000 4.0000 2 0.7142 0.6938 2 2.8568 2.7752 3 0.5101 0.4813 3 2.0403 1.9258 4 0.3643 0.3339 4 1.4571 1.3361 5 0.2601 0.2316 5 1.0406 0.9269 10 0.0482 0.0371 10 0.1932 0.1489 15 0.0088 0.0058 15 0.0357 0.0238 20 0.0015 0.0008 20 0.0065 0.0037 25 0.0002 0.0000 25 0.0010 0.0004 30 0.0000 0.0000 30 0.0001 0.0000 31 0.0000 0.0000 31 0.0000 0.0000 32 0.0000 0.0000 32 0.0000 0.0000 -
References
[1] R. P. Agarwal, N.-J. Huang and M.-Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi variational inclusions, Appl. Math. Lett., 17 (2004), 345-352. doi: 10.1016/S0893-9659(04)90073-0. [2] R. P. Agarwal and R. U. Verma, Generalized system of $(A, \eta)$-maximal relaxed monotone variational inclusion problems based on generalized hybrid algorithms, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 238-251. doi: 10.1016/j.cnsns.2009.03.037. [3] R. Ahmad, I. Ali, M. Rahaman, M. Ishtyak and J. C. Yao, Cayley inclusion problem with its corresponding generalized resolvent equation problem in uniformly smooth Banach spaces, Appl. Anal., 101 (2022), 1354-1368. doi: 10.1080/00036811.2020.1781822. [4] R. Ahmad and Q. H. Ansari, An iterative algorithm for generalized nonlinear variational inclusions, Appl. Math. Lett., 13 (2002), 23-26. doi: 10.1016/S0893-9659(00)00028-8. [5] R. Ahmad, M. Ishtyak, M. Rahaman and I. Ahmad, Graph convergence and generalized Yosida approximation operator with an application, Math. Sci., 11 (2017), 155-163. doi: 10.1007/s40096-017-0221-5. [6] F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach space, Bull. Am. Math. Soc., 73 (1967), 875-882. doi: 10.1090/S0002-9904-1967-11823-8. [7] H.-W. Cao, Yosida approximation equations technique for system of generalized set-valued variational inclusions, J. Inequal. Appl., 2013 (2013), Article ID 455. doi: 10.1186/1029-242X-2013-455. [8] J. Deepho, P. Thounthong, P. Kumam and S. Phiangsungnoen, A new general iterative scheme for split variational inclusions and fixed point problems of $k$-strict pseudo-contraction mappings with convergence analysis, J. Comput. Appl. Maths., 318 (2017), 293-306. doi: 10.1016/j.cam.2016.09.009. [9] Y.-P. Fang and N.-J. Huang, $H$-accretive operator and resolvent operator technique for variational inclusions in Banach spaces, Appl. Math. Lett., 17 (2004), 647-653. doi: 10.1016/S0893-9659(04)90099-7. [10] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 183 (1994), 706-712. doi: 10.1006/jmaa.1994.1277. [11] N. J. Huang and Y. P. Fang, Generalized m-accretive mappings in Banach spaces, J. Sichuan Univ., 38 (2001), 591-592. [12] J. Iqbal, A. K. Rajpoot, M. Islam, R. Ahmad and Y. Wang, System of generalized variational inclusions involving cayley operators and XOR-operation in q-uniformly smooth Banach spaces, Mathematics, 10 (2022), 2837. doi: 10.3390/math10162837. [13] T. Kato, Nonlinear semi-groups and evolution equations, J. Math. Soc. Jpn., 19 (1967), 508-520. doi: 10.2969/jmsj/01940508. [14] H.-Y. Lan, Generalized Yosida approximation based on relatively $A$-maximal $m$-relaxed monotonicity frameworks, Abs. Appl. Anal., 2013 (2013), Art. ID 157190, 8 pp. doi: 10.1155/2013/157190. [15] H.-Y. Lan, Y. J. Cho and R. U. Verma, Nonlinear relaxed cocoercive variational inclusions involving $(A, \eta)$-accretive mappings in Banach spaces, Comput. Math. Appl., 51 (2006), 1529-1538. doi: 10.1016/j.camwa.2005.11.036. [16] H.-Y. Lan, J. H. Kim and Y. J. Cho, On a new system of nonlinear $A$-monotone multivalued variational inclusions, J. Math. Anal. Appl., 327 (2007), 481-493. doi: 10.1016/j.jmaa.2005.11.067. [17] A. Moudafi, A duality algorithm for solving general variational inclusions, Adv. Model. Optim., 13 (2011), 213-220. [18] W. V. Petershyn, A characterization of strictly convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal., 6 (1970), 282-291. doi: 10.1016/0022-1236(70)90061-3. [19] Z. A. Rather, R. Ahmad and C.-F. Wen, Variational-like inequality problem involving generalized cayley operator, Axioms, 10 (2021), 133. doi: 10.3390/axioms10030133. [20] C. Zhang and Y. Wang, Proximal algorithm for solving monotone variational inclusions, Optimization, 67 (2018), 1197-1209. doi: 10.1080/02331934.2018.1455832. [21] Q.-B. Zhang, X.-P. Ding and C.-Z. Chang, Resolvent operator technique for generalized implicit variational-like inclusion in Banach spaces, J. Math. Anal. Appl., 361 (2010), 283-292. doi: 10.1016/j.jmaa.2006.01.090. [22] X. Zhao, D. R. Sahu and C.-F. Wen, Iterative methods for system of variational inclusions involving accretive operators and applications, Fixed Point Theory, 19 (2018), 801-821. doi: 10.24193/fpt-ro.2018.2.59. [23] Y.-Z. Zou and N.-J. Huang, $H(., .)$-accretive operator with an application for solving variational inclusions in Bananch spaces, Appl. Math. Comput., 204 (2008), 809-816. doi: 10.1016/j.amc.2008.07.024. -
Access History
-
Figure 1.
The convergence of
with initial values$ \left\{u_n\right\} $ and$ u_0 = 1,\; u_0 = 2 $ $ u_0 = 4. $ -
Figure 2.
The convergence of
and$ \left\{u_n\right\} $ with initial values$ \left\{s_n\right\} $ and$ s_0 = 1 $ $ s_0 = 4. $