This issue
Previous Article
Next Article
A knowledge representation learning model based on relation rotation in two-dimensional Minkowski space
Fuzzy stability of mixed type functional equations in Modular spaces
-
Abstract
In this article, our aim is to find some stability results for mixed type cubic and quartic functional equations in fuzzy modular spaces using the fundamental results of fixed-point theory. The fixed point method provides one of the effective techniques that can be used to investigate the fuzzy stability of a mixed type cubic and quartic functional equations.
Mathematics Subject Classification: Primary: 39B82, 39B52; Secondary: 46A80.Citation: -
References
[1] I. Amemiya, On the representation of complemented modular lattices, J. Math. Soc. Japan, 9 (1957), 263-279. doi: 10.2969/jmsj/00920263. [2] L. Cǎdariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber., 346 (2004), 43-52. [3] I. EL-Fassi, Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdek's fixed point theorem, J. Fixed Point Theory Appl., 19 (2017), 2529-2540. doi: 10.1007/s11784-017-0439-8. [4] M. Eshaghi Gordji, S. Zolfaghari, J. M. Rassias and M. B. Savadkouhi, Solutions and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abst. and Appl. Anal., (2009), Article ID 417473, 14 pp. doi: 10.1155/2009/417473. [5] V. Govindan, C. Park, S. Pinelas and S. Baskaran, Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705. doi: 10.3934/math.2020114. [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222. [7] G. Isac and T. M. Rassias, Stability of $\varphi$-additive mappings: Applications to nonlinear analysis, Int. J. Math. Math. Sci., 19 (1996), 219-228. doi: 10.1155/S0161171296000324. [8] S.-M. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 165-171. doi: 10.1007/s10898-013-0083-9. [9] S. Koshi and T. Shimogaki, On $F$-norms of quasi-modular spaces, J. Fac. Sci. Hokkaido University, 115 (1961), 202-218. [10] M. Krbec, Modular interpolation spaces. I, Z. Anal. Anwendungen, 1 (1982), 25-40. doi: 10.4171/ZAA/3. [11] P. Kumam, Some geometric properties and fixed point theorem in modular spaces, Fixed Point Theory Appl., Yokohama Publ., Yokoham, (2004), 173-188. [12] P. Kumam, Fixed point theorems for nonexpansive mappings in modular spaces, Arch. Math., 40 (2004), 345-353. [13] J. R. Lee, J. Kim and C. Park, A fixed point approach to the stability of an additive-quadratic-cubic-quartic functional equation, Fixed Point Theory Appl., (2010), Art. ID 185780, 16 pp. doi: 10.1155/2010/185780. [14] Y.-H. Lee, S. Jung and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61. doi: 10.7153/jmi-2018-12-04. [15] W. A. Luxemburg, Banach function spaces, PhD Thesis, Delft University of Technology, Delft, The Netherlands, 1959. [16] A. Maduta and B. Mosnegutu, Ulam stability in real inner-product spaces, Constructive Math. Anal., 3 (2020), 113-115. doi: 10.33205/cma.758854. [17] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math., 47 (1978), 33-186. [18] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034. Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210. [19] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950. [20] W. Orlicz, Collected Papers. Part I, II, PWN-Polish Scientific Publishers, Warsaw, 1988. [21] S. Pinelas, V. Govindan and K. Tamilvanan, Stability of a quartic functional equation, J. Fixed Point Theory Appl., 20 (2018), Paper No. 148, 10 pp. doi: 10.1007/s11784-018-0629-z. [22] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96. [23] M. Ramdoss, J. M. Rassias and D. Pachaiyappan, Stability of generalized AQCQ-functional equation in modular space, J. Eng. Appl. Sci., 15 (2020), 1148-1157. doi: 10.36478/jeasci.2020.1148.1157. [24] J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130. doi: 10.1016/0022-1236(82)90048-9. [25] K. Ravi, J. M. Rassias, M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equational equation, J. Inequal. Pure Appl. Math., 10 (2009), Article 114, 29 pp. [26] J. Senasukh and S. Saejung, A note on the stability of some functional equations on certain groupoids, Constructive Math. Anal., 3 (2020), 96-103. doi: 10.33205/cma.729765. [27] Y. Shen and W. Chen, On fuzzy modular spaces, J. Appl. Math., (2013), Article ID 576237, 8 pp. doi: 10.1155/2013/576237. [28] P. Turpin, Fubini inequalities and bounded multiplier property in generalized modular spaces, Comm. Math., 1 (1978), 331-353. [29] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London, 1960. [30] F. Weisz, Unrestricted Cesàro summability of d-dimensional Fourier series and Lebesgue points, Constructive Math. Anal., 4 (2021), 179-185. [31] K. Wongkum, P. Chaipunya and P. Kumam, Some analogies of the Banach contraction principle in fuzzy modular spaces, Sci. World J. (2013), Article ID 205275. doi: 10.1155/2013/205275. [32] K. Wongkum and P. Kumam, The stability of sextic functional equation in fuzzy modular spaces, J. Nonlinear Sci. Appl., 9 (2016), 3555-3569. doi: 10.22436/jnsa.009.06.10. [33] T. Z. Xu, J. M. Rassias and W. X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQfunctional equation in multi-Banach spaces: A fixed point approach, Eur. J. Pure Appl. Math., 3 (2010), 1032-1047. [34] S. Yamamu, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90 (1959), 291-311. doi: 10.1090/S0002-9947-1959-0132378-1. [35] S. Zolfaghari, A. Ebadian, S. Ostadbashi, M. de la Sen and M. Eshaghi Gordji, A fixed point approach to the Hyers-Ulam stability of an AQ functional equation in probabilistic modular spaces, Int. J. Nonlinear Anal. Appl., 4 (2013), 89-101. -
Access History