Paint surface estimation and trajectory planning for automated painting systems
-
Abstract
This paper investigates the problem of paint surface estimation and trajectory planning for the automated painting process using a six-degree-of-freedom (6DOF) robot. We first present the kinematic model of the 6DOF articulated spraying robot and calculate the coordinate transformation of the robot's end effector relative to the base position. Then we design the size of the robot's joints to ensure sufficient spraying working space for the outer coverings of automobiles. Next, we stitch the acquired workpiece point cloud data (PCD) and perform noise reduction. The iterative closest point (ICP) algorithm integrates the workpiece PCD obtained from different locations into a unified coordinate system. Based on the features of the workpiece surface, we compute the normal vector for the point cloud. Then, the original point cloud data is segmented into several pieces by the different components of the normal vector on the coordinate axis. By slicing the segmented PCD evenly, we approximate the spraying paths of each surface of the car cover. Finally, we validate the effectiveness of our proposed algorithm through simulation.
Mathematics Subject Classification: Primary: 93-10; Secondary: 93-08.Citation: -
Figure 1. Three coordinate systems: initial coordinate system $ O_i-X_iY_iZ_i $ (use $ \mathcal{O}_i $ for abbr.), intermediate coordinate system $ O_k-X_kY_kZ_k $(use $ \mathcal{O}_k $ for abbr.) and the coordinate system after transformation $ O_j-X_jY_jZ_j $ (use $ \mathcal{O}_j $ for abbr.). $ \mathcal{O}_k $ is obtained by translating $ \mathcal{O}_i $ along $ p_{ij} $. $ \mathcal{O}_j $ is obtained by rotating $ \mathcal{O}_k $ by $ \theta $ degrees around the $ z $-axis. The point $ p $ is any point in space
Table 1. Spraying robot D-H parameter list
Linkage number (mm)$ {l_i} $ (°)$ {\alpha _i} $ (mm)$ {d_{i}} $ (°)$ {\theta _i} $ 1 0 0 0 $ {\theta _1} $ 2 0 -90 0 $ {\theta _2} $ 3 $ {l_3} $ 0 0 $ {\theta _3} $ 4 0 -90 $ {d_{4}} $ $ {\theta _4} $ 5 0 $ {\beta} $ $ {d_{5}} $ $ {\theta _5} $ 6 0 - $ {\beta} $ $ {d_{6}} $ $ {\theta _6} $ Table 2. The joint rotation range
Parameter $ {\theta _1} $ $ {\theta _2} $ $ {\theta _3} $ $ {\theta _4} $ $ {\theta _5} $ $ {\theta _6} $ Rotation range -160°-160° -90°-150° -60°-90° 0°-360° 0°-360° 0°-360° -
References
[1] S. Asif and P. Webb, Kinematics analysis of 6-dof articulated robot with spherical wrist, Mathematical Problems in Engineering, (2021), 1-11. doi: 10.1155/2021/6647035. [2] P. N. Atkar, H. Choset and A. A. Rizzi, Towards optimal coverage of 2-dimensional surfaces embedded in ir/sup 3: Choice of start curve, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), 4 (2003), 3581-3587. doi: 10.1109/IROS.2003.1249711. [3] X. Bao, Y. Niu, Y. Li, J. Mao, S. Li, X. Ma, Q. Yin and B. Chen, Design and kinematic analysis of cable-driven target spray robot for citrus orchards, Applied Sciences, 12 (2022), 9379. doi: 10.3390/app12189379. [4] H. Chen, H. Ma, H. Jiang, S. Lv, Y. Li and H. Liu, Kinematic modeling of 3p2r welding robot based on dh parameters, Journal of Physics: Conference Series, 2218 (2022), 012085. [5] W. Chen, X. Li, H. Ge, L. Wang and Y. Zhang, Trajectory planning for spray painting robot based on point cloud slicing technique, Electronics, 9 (2020), 908. doi: 10.3390/electronics9060908. [6] W. Chen, Y. Tang and Q. Zhao, A novel trajectory planning scheme for spray painting robot with bézier curves, 2016 Chinese Control and Decision Conference (CCDC), (2016), 6746-6750. doi: 10.1109/CCDC.2016.7532211. [7] H. Chen, N. Xi, W. Sheng and Y. Chen, General framework of optimal tool trajectory planning for free-form surfaces in surface manufacturing, J. Manuf. Sci. Eng., 127 (2005), 49-59. doi: 10.1115/1.1828057. [8] H. Chen, N. Xi, W. Sheng, Y. Chen, A. Roche and J. Dahl, A general framework for automatic cad-guided tool planning for surface manufacturing, 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), 3 (2003), 3504-3509. [9] J. J. Craig, Introduction to Robotics, Pearson Educacion, 2006. [10] J. Denavit and R. S. Hartenberg, A kinematic notation for lower-pair mechanisms based on matrices, Journal of Applied Mechanics, 22 (1955), 215-221. doi: 10.1115/1.4011045. [11] C. Duan, S. Chen and J. Kovacevic, 3D point cloud denoising via deep neural network based local surface estimation, ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2019), 8553-8557. doi: 10.1109/ICASSP.2019.8682812. [12] P. J. From, J. Gunnar and J. T. Gravdahl, Optimal paint gun orientation in spray paint applications-experimental results, IEEE Transactions on Automation Science and Engineering, 8 (2010), 438-442. doi: 10.1109/TASE.2010.2089450. [13] G. Gao, G. Sun, J. Na, Y. Guo and X. Wu, Structural parameter identification for 6 dof industrial robots, Mechanical Systems and Signal Processing, 113 (2018), 145-155. doi: 10.1016/j.ymssp.2017.08.011. [14] S. Ibaraki, K. Fukuda, M. Alam, S. Morita, H. Usuki, N. Otsuki and H. Yoshioka, Novel six-axis robot kinematic model with axis-to-axis crosstalk, CIRP Annals, 70 (2021), 411-414. doi: 10.1016/j.cirp.2021.04.079. [15] O. Igno-Rosario, C. Hernandez-Aguilar, A. Cruz-Orea and A. Dominguez-Pacheco, Interactive system for painting artworks by regions using a robot, Robotics and Autonomous Systems, 121 (2019), 103263. doi: 10.1016/j.robot.2019.103263. [16] A. Klein, Cad-based off-line programming of painting robots, Robotica, 5 (1987), 267-271. doi: 10.1017/S0263574700016283. [17] L. Liu, Y. Liu, X. He and W. Liu, Precision variable-rate spraying robot by using single 3d lidar in orchards, Agronomy, 12 (2022), 2509. doi: 10.3390/agronomy12102509. [18] M. Quach, J. Pang, D. Tian, G. Valenzise and F. Dufaux, Survey on deep learning-based point cloud compression, Frontiers in Signal Processing, 2 (2022). doi: 10.3389/frsip.2022.846972. [19] S.-H. Suh, I.-K. Woo and S.-K. Noh, Development of an automatic trajectory planning system (ATPS) for spray painting robots, Proceedings. 1991 IEEE International Conference on Robotics and Automation, (1991), 1948-1955. doi: 10.1109/ROBOT.1991.131912. [20] S.-H. Suh, I.-K. Woo and S.-K. Noh, Development of an automatic trajectory planning system (ATPS) for spray painting robots, Proceedings. 1991 IEEE International Conference on Robotics and Automation, (1991), 1948-1955. doi: 10.1109/ROBOT.1991.131912. [21] L. Tao, T. Nguyen, T. Nguyen, T. Ito and T. Bui, An adaptive differential evolution algorithm with a point-based approach for 3d point cloud registration, Journal of Image and Graphics, 10 (2022), 1-9. doi: 10.18178/joig.10.1.1-9. [22] Y. Wan, H. Li and X. Chen, Kinematics analysis and visualization simulation of 6-dof intelligent cooperative robot, Journal of Physics: Conference Series, 2283, (2022), 012013. doi: 10.1088/1742-6596/2283/1/012013. [23] Q. Wang, Y. Zhong, B. Guo and S. Dian, Research on trajectory planning of spraying robot based on improved omp algorithm, Modern Manufacturing Engineering, 495 (2021), 28. [24] J. Wang and S. Han, Kinematics analysis and simulation of manipulator by using matlab/simulink, Journal of Advances in Artificial Life Robotics, 2 (2021), 154-157. [25] Y. Wang, L. Xie, H. Wang, W. Zeng, Y. Ding, T. Hu, T. Zheng, H. Liao and J. Hu, Intelligent spraying robot for building walls with mobility and perception, Automation in Construction, 139 (2022), 104270. doi: 10.1016/j.autcon.2022.104270. [26] T. Zhang, S. Zhao, X. Luan and F. Liu, Bayesian inference for state-space models with student-t mixture distributions, IEEE Transactions on Cybernetics, 53 (2022), 4435-4445. doi: 10.1109/TCYB.2022.3183104. [27] S. Zhao and B. Huang, Trial-and-error or avoiding a guess? initialization of the kalman filter, Automatica J. IFAC, 121 (2020), 109184, 12 pp. doi: 10.1016/j.automatica.2020.109184. [28] S. Zhao, B. Huang and C. Zhao, Online probabilistic estimation of sensor faulty signal in industrial processes and its applications, IEEE Transactions on Industrial Electronics, 68 (2020), 8853-8862. doi: 10.1109/TIE.2020.3016254. [29] S. Zhao, K. Li, C. K. Ahn, B. Huang and F. Liu, Tuning-free bayesian estimation algorithms for faulty sensor signals in state-space, IEEE Transactions on Industrial Electronics, 70 (2022), 921-929. doi: 10.1109/TIE.2022.3153814. [30] S. Zhao, Y. S. Shmaliy, C. K. Ahn and F. Liu, Self-tuning unbiased finite impulse response filtering algorithm for processes with unknown measurement noise covariance, IEEE Transactions on Control Systems Technology, 29 (2020), 1372-1379. [31] S. Zhao, Y. S. Shmaliy, J. A. Andrade-Lucio and F. Liu, Multipass optimal fir filtering for processes with unknown initial states and temporary mismatches, IEEE Transactions on Industrial Informatics, 17 (2020), 5360-5368. doi: 10.1109/TII.2020.3026999. [32] S. Zhao, Y. S. Shmaliy and F. Liu, Batch optimal fir smoothing: Increasing state informativity in nonwhite measurement noise environments, IEEE Transactions on Industrial Informatics, 19 (2022), 6993-7001. doi: 10.1109/TII.2022.3193879. [33] S. Zhao, J. Wang, Y. S. Shmaliy and F. Liu, Discrete time q-lag maximum likelihood fir smoothing and iterative recursive algorithm, IEEE Transactions on Signal Processing, 69 (2021), 6342-6354. doi: 10.1109/TSP.2021.3127677. -
Access History
-
Figure 1.
Three coordinate systems: initial coordinate system
(use$ O_i-X_iY_iZ_i $ for abbr.), intermediate coordinate system$ \mathcal{O}_i $ (use$ O_k-X_kY_kZ_k $ for abbr.) and the coordinate system after transformation$ \mathcal{O}_k $ (use$ O_j-X_jY_jZ_j $ for abbr.).$ \mathcal{O}_j $ is obtained by translating$ \mathcal{O}_k $ along$ \mathcal{O}_i $ .$ p_{ij} $ is obtained by rotating$ \mathcal{O}_j $ by$ \mathcal{O}_k $ degrees around the$ \theta $ -axis. The point$ z $ is any point in space$ p $ -
Figure 2.
D-H coordinate system of adjacent linkage:
$ Link $ and$ i-1 $ $ Link $ . The transformation here involves two translations and two rotations. The parameters of the transformation are$ i $ ,$ {\alpha _i} $ ,$ {l_i} $ ,$ {d_{i}} $ $ {\theta _i} $ -
Figure 3.
Spraying robot initial stance and the outer covering parts of the car to be sprayed. We will establish the coordinate system at each joint of the robot in this stance
-
Figure 4.
Coordinate system established at each joint of the robot.
represent the values of the D-H parameters of the corresponding linkage.$ l,d,\beta $ represents the name of the linkage.$ L $ represent the coordinate system$ X,Y,Z $ -
Figure 5.
Schematic diagram of point cloud slicing. The intersection plane is
and the bandwidth is$ W_0 $ $ \partial $ -
Figure 6.
Path generation process
-
Figure 7.
Robot workspaces from different perspectives
-
Figure 8.
Original point cloud
-
Figure 9.
Registered point cloud
-
Figure 10.
Point cloud segmentation results
-
Figure 11.
Results of point cloud slices from different parts