\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

On the role of tumor heterogeneity for optimal cancer chemotherapy

  • * Corresponding author: Urszula Ledzewicz

    * Corresponding author: Urszula Ledzewicz 
Abstract / Introduction Full Text(HTML) Figure(5) Related Papers Cited by
  • We review results about the influence tumor heterogeneity has on optimal chemotherapy protocols (relative to timing, dosing and sequencing of the agents) that can be inferred from mathematical models. If a tumor consists of a homogeneous population of chemotherapeutically sensitive cells, then optimal protocols consist of upfront dosing of cytotoxic agents at maximum tolerated doses (MTD) followed by rest periods. This structure agrees with the MTD paradigm in medical practice where drug holidays limit the overall toxicity. As tumor heterogeneity becomes prevalent and sub-populations with resistant traits emerge, this structure no longer needs to be optimal. Depending on conditions relating to the growth rates of the sub-populations and whether drug resistance is intrinsic or acquired, various mathematical models point to administrations at lower than maximum dose rates as being superior. Such results are mirrored in the medical literature in the emergence of adaptive chemotherapy strategies. If conditions are unfavorable, however, it becomes difficult, if not impossible, to limit a resistant population from eventually becoming dominant. On the other hand, increased heterogeneity of tumor cell populations increases a tumor's immunogenicity and immunotherapies may provide a viable and novel alternative for such cases.

    Mathematics Subject Classification: Primary: 92C50, 49K15; Secondary: 93C15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Example of locally optimal controls for a $ 3 $-compartment model with cytotoxic ($ u $) and cytostatic ($ v $) agents. The initial condition is the normalized (in terms of percentages [44]) steady-state solution of the uncontrolled system and an objective of the type (2) has been minimized

    Figure 2.  Example of an extremal control and associated states for a bang-singular controlled trajectory

    Figure 3.  Extremal controls (top), evolution of the total tumor $ \bar{N} $ (middle) and profiles $ n(20,x) $ at the terminal time $ T = 20 $ for different mutation rates $ \theta $

    Figure 4.  Example of the phase portraits for the system (19)-(20) with a Gompertzian growth function $ F(x) = - \xi \ln \left( \frac{x}{K} \right) $ with tumor growth rate $ \xi $ and carrying capacity $ K $. The benign equilibrium point is marked with a green star and the malignant one with a red star

    Figure 5.  Example of numerically computed optimal controls for the system (19)-(20) with a Gompertzian growth function

  • [1] MTD, NCI Dictionary of Cancer Terms, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mtd, accessed 08/18/18.
    [2] N. AndréL. Padovani and E. Pasquier, Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy?, Future Oncology, 7 (2011), 385-394. 
    [3] F. Billy and J. Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs, Discr. and Cont. Dyn. Syst., Series B, 18 (2013), 865-889.  doi: 10.3934/dcdsb.2013.18.865.
    [4] F. Billy, J. Clairambault and O. Fercoq, Optimisation of Cancer Drug Treatments Using Cell Population Dynamics, in: Mathematical Methods and Models in Biomedicine, (U. Ledzewicz, H. Schättler, A. Friedman and E. Kashdan, Eds.), Springer, New York, 2013, 265–309. doi: 10.1007/978-1-4614-4178-6_10.
    [5] O. BonefonJ. Covile and G. Legendre, Concentration phenomena in some non-local equation, J. Discrete and Continuous Dynamical Systems, Series B, 22 (2017), 763-781.  doi: 10.3934/dcdsb.2017037.
    [6] B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Mathématiques & Applications, vol. 40, Springer Verlag, Paris, 2003.
    [7] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007.
    [8] M. Delitalia and T. Lorenzi, Formations of evolutionary patterns in cancer dynamics, in: Pattern Formation in Morphogenesis: Problems and Mathematical Issues, (V. Capasso et al., Eds.), Springer Proceedings in Mathematics, 15 (2013), 179–190. doi: 10.1007/978-3-642-20164-6_15.
    [9] M. Delitalia and T. Lorenzi, Recognition and learning in a mathematical model for immune response against cancer, Discr. and Cont. Dyn. Syst., Series B, 18 (2013), 891-914.  doi: 10.3934/dcdsb.2013.18.891.
    [10] M. Delitalia and T. Lorenzi, Mathematical modelling of cancer under target therapeutic actions: Selection, mutation and drug resistance, in: Managing Complexity, Reducing Perplexity in Biological Systems, (M. Delitala and G. Ajmone Marsan Eds.), Springer Proceedings in Mathematics & Statistics, 2014, 81–99.
    [11] G. P. DunnA. T. BruceH. IkedaL. J. Old and R. D. Schreiber, Cancer immunoediting: From immunosurveillance to tumor escape, Nat. Immunol., 3 (2002), 991-998.  doi: 10.1038/ni1102-991.
    [12] H. EaswaranH. C. Tsai and S. B. Baylin, Cancer epigenetics: Tumor Heterogeneity, Plasticity of Stem-like States, and Drug Resistance, Molecular Cell, 54 (2014), 716-727.  doi: 10.1016/j.molcel.2014.05.015.
    [13] M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, Berlin, 1979.
    [14] R. A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009), 508-509.  doi: 10.1038/459508a.
    [15] R. A. GatenbyA. S. SilvaR. J. Gillies and B. R. Frieden, Adaptive therapy, Cancer Research, 69 (2009), 4894-4903.  doi: 10.1158/0008-5472.CAN-08-3658.
    [16] J. H. Goldie, Drug resistance in cancer: A perspective, Cancer and Metastasis Review, 20 (2001), 63-68. 
    [17] J. H. Goldie and A. Coldman, A model for resistance of tumor cells to cancer chemotherapeutic agents, Mathematical Biosciences, 65 (1983), 291-307. 
    [18] R. GrantabS. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66 (2006), 1033-1039.  doi: 10.1158/0008-5472.CAN-05-3077.
    [19] J. GreeneO. LaviM. M. Gottesman and D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull. Math. Biol., 74 (2014), 627-653.  doi: 10.1007/s11538-014-9936-8.
    [20] P. Hahnfeldt and L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations, Radiation Research, 150 (1998), 681-687.  doi: 10.2307/3579891.
    [21] P. HahnfeldtJ. Folkman and L. Hlatky, Minimizing long-term burden: the logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003), 545-554.  doi: 10.1006/jtbi.2003.3162.
    [22] D. HanahanG. Bergers and E. Bergsland, Less is more, regularly: Metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, J. Clinical Investigations, 105 (2000), 1045-1047.  doi: 10.1172/JCI9872.
    [23] M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletins of the Silesian Technical University, 65 (1983), 120-130. 
    [24] O. LaviJ. GreeneD. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73 (2013), 7168-7175.  doi: 10.1158/0008-5472.CAN-13-1768.
    [25] U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.  doi: 10.1023/A:1016027113579.
    [26] U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183-206.  doi: 10.1142/S0218339002000597.
    [27] U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 129-150.  doi: 10.3934/dcdsb.2006.6.129.
    [28] U. Ledzewicz and H. Schättler, Tumor microenvironment and anticancer therapies: An optimal control approach, in: Mathematical Oncolgy 2013, (A. d'Onofrio and A. Gandolfi, Eds.), Birkhäuser, New York, 2013, 295–334.
    [29] U. LedzewiczK. Bratton and H. Schättler, A $3$-compartment model for chemotherapy of heterogeneous tumor populations, Acta Applicandae Matematicae, 135 (2015), 191-207.  doi: 10.1007/s10440-014-9952-6.
    [30] U. LedzewiczM. S. Faraji Mosalman and H. Schättler, Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost, Discrete and Continuous Dynamical Systems, Series B, 18 (2013), 1031-1051.  doi: 10.3934/dcdsb.2013.18.1031.
    [31] U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors, J. of Biological Systems, 22 (2014), 177-197.  doi: 10.1142/S0218339014400014.
    [32] U. Ledzewicz and H. Schättler, A review of optimal chemotherapy protocols: From MTD towards metronomic therapy, Math. Model. Nat. Phenom., 9 (2014), 131-152.  doi: 10.1051/mmnp/20149409.
    [33] U. Ledzewicz and H. Schättler, Optimizing chemotherapeutic anti-cancer treatment and the tumor microenvironment: an analysis of mathematical models, in: Systems Biology of Tumor Microenvironment, Advances in Experimental Medicine and Biology Vol. 936, (K.A. Rejniak (ed.)), 2016, 209–223. doi: 10.1007/978-3-319-42023-3_11.
    [34] A. LorzT. LorenziM. E. HochbergJ. Clairambault and B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 377-399.  doi: 10.1051/m2an/2012031.
    [35] A. LorzT. LorenziJ. ClairambaultA. Escargueil and B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77 (2015), 1-22.  doi: 10.1007/s11538-014-0046-4.
    [36] L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61 (1977), 1307-1317. 
    [37] L. Norton and R. Simon, The Norton-Simon hypothesis revisited, Cancer Treatment Reports, 70 (1986), 41-61. 
    [38] B. Perthame, Transport Equations in Biology, Birkhäuser, Basel, Switzerland, 2007.
    [39] K. Pietras and D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose "chemo-switch" regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer, J. of Clinical Oncology, 23 (2005), 939-952. 
    [40] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964.
    [41] C. Pouchol, J. Clairambault, A. Lorz and E. Trélat, Asymptotic analysis and optimal control of integro-differential system modelling healtyh and ccells exposed to chemotherapy, J. de Mathématiques Pures et Appliquées, 2017; arXiv: 1612.04698 [math.OC]
    [42] E. Ramos, C. Nespoli and P. Ramos, Feedback optimal control for mathematical models for cancer treatment, Preprint, 2018.
    [43] H. Schättler and U. Ledzewicz, Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38, Springer, 2012. doi: 10.1007/978-1-4614-3834-2.
    [44] H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies, Interdisciplinary Applied Mathematics, vol. 42, Springer, 2015. doi: 10.1007/978-1-4939-2972-6.
    [45] R. D. SchreiberL. J. Old and M. J. Smyth, Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion, Science, 331 (2011), 1565-1570.  doi: 10.1126/science.1203486.
    [46] S. V. Sharma et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations, Cell, 141 (2010), 69–80. doi: 10.1016/j.cell.2010.02.027.
    [47] H. E. Skipper, On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future), Bulletin of Mathematical Biology, 48 (1986), 253-278.  doi: 10.1007/BF02459681.
    [48] N. V. Stepanova, Course of the immune reaction during the development of a malignant tumour, Biophysics, 24 (1980), 917-923. 
    [49] G. W. Swan, Applications of Optimal Control Theory in Medicine, Marcel Dekker, New York, 1984.
    [50] G. W. Swan, General applications of optimal control theory in cancer chemotherapy, IMA J. of Mathematical Applications in Medicine and Biology, 5 (1988), 303-316.  doi: 10.1093/imammb/5.4.303.
    [51] A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle, Biomedical Systems Modelling and Simulation (Paris, 1988), 51–53, IMACS Ann. Comput. Appl. Math., 5, IMACS Trans. Sci. Comput. '88, Baltzer, Basel, 1989.
    [52] A. Swierniak, Cell cycle as an object of control, Journal of Biological Systems, 3 (1995), 41-54. 
    [53] A. SwierniakU. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368. 
    [54] A. SwierniakA. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell proliferation, 29 (1996), 117-139. 
    [55] A. SwierniakA. PolanskiM. KimmelA. Bobrowski and J. Smieja, Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach, Control and Cybernetics, 28 (1999), 61-75. 
    [56] A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2000), 375-386.  doi: 10.1016/S0362-546X(01)00184-5.
    [57] G. Tonini, M. Imperatori, B. Vincenci, A. M. Frezza and D. Santini, Rechallenge therapy and treatment holiday: Different strategies in management of metastatic colorectal cancer, J. Experimental Clinical Cancer Research, 32 (2013), p92. doi: 10.1186/1756-9966-32-92.
    [58] S. Wang and H. Schättler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity, Mathematical Biosciences and Engineering - MBE, 13 (2016), 1223-1240.  doi: 10.3934/mbe.2016040.
    [59] S. Wang and H. Schättler, Optimal control for cancer chemotherapy under tumor heterogeneity, Discrete and Continuous Dynamical Systems, Series B, 48 (2018).
    [60] S. D. WeitmanE. Glatstein and B. A. Kamen, Back to the basics: the importance of concentration $\times$ time in oncology, J. of Clinical Oncology, 11 (1993), 820-821.  doi: 10.1200/JCO.1993.11.5.820.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(2410) PDF downloads(558) Cited by(0)

Access History

Other Articles By Authors

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint