\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Optimal reinforcing networks for elastic membranes

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Figure(3) / Table(1) Related Papers Cited by
  • In this paper we study the optimal reinforcement of an elastic membrane, fixed at its boundary, by means of a network (connected one-dimensional structure), that has to be found in a suitable admissible class. We show the existence of an optimal network, and observe that such network carries a multiplicity that in principle can be strictly larger than one. Some numerical simulations are shown to confirm this issue and to illustrate the complexity of the optimal network when the total length becomes large.

    Mathematics Subject Classification: 49J45, 49Q10, 35R35, 35J25, 49M05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Approximation of globally optimal reinforcement structures for $ m = 0.5 $, $ L = 1, \, 2 $ and $ 3 $. The upper colorbar is related to the weights $ \theta $ which colors the optimal reinforcement set on the left, whereas the lower colorbar stands for the tangential gradient plotted on the connected set on the right picture

    Figure 3.  Approximation of globaly optimal reinforcement structures for $ m = 0.5 $, $ L = 4, \, 5 $ and $ 6 $. The upper colorbar is related to the weights $ \theta $ which colors the optimal reinforcement set on the left, whereas the lower colorbar stands for the tangential gradient plotted on the connected set on the right picture

    Figure 2.  Approximation of globaly optimal reinforcement strucutres for m = 0.5, L = 1.5, 2.5 and 5 for a source consisting of two dirac masses. The upper colorbar is related to the weights θ which colors the optimal reinforcement set on the left, whereas the lower colorbar stands for the tangential gradient plotted on the connected set on the right picture

    Table 1.  Reinforcement values computed on a fine mesh of $ 10^6 $ elements for classical and computed connected sets for $ m = 0.5 $

    Length constraint Theoretical guesses Computed optimal networks
    1 -0.179471 (radius) -0.178873
    2 -0.165095 (diameter) -0.161944
    3 -0.152676 (star) -0.149601
    4 -0.141969 (cross) -0.138076
    5 - -0.127661
    6 - -0.117140
     | Show Table
    DownLoad: CSV
  • [1] G. Alberti and M. Ottolini, On the structure of continua with finite length and Golab's semicontinuity theorem, Nonlinear Anal., 153 (2017), 35-55.  doi: 10.1016/j.na.2016.10.012.
    [2] E. AcerbiG. Buttazzo and D. Percivale, Thin inclusions in linear elasticity: A variational approach, J. Reine Angew. Math., 386 (1988), 99-115.  doi: 10.1515/crll.1988.386.99.
    [3] M. Beckmann, A continuous model of transportation, Econometrica, 20 (1952), 643-660.  doi: 10.2307/1907646.
    [4] G. BouchittéG. Buttazzo and P. Seppecher, Energies with respect to a measure and applications to low dimensional structures, Calc. Var. Partial Differential Equations, 5 (1996), 37-54.  doi: 10.1007/s005260050058.
    [5] L. BrascoG. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., 93 (2010), 652-671.  doi: 10.1016/j.matpur.2010.03.010.
    [6] G. ButtazzoG. Carlier and S. Guarino Lo Bianco, Optimal regions for congested transport, ESAIM Math. Model. Numer. Anal., 49 (2015), 1607-1619.  doi: 10.1051/m2an/2015022.
    [7] G. ButtazzoÉ. Oudet and B. Velichkov, A free boundary problem arising in PDE optimization, Calc. Var. Partial Differential Equations, 54 (2015), 3829-3856.  doi: 10.1007/s00526-015-0923-1.
    [8] G. Buttazzo, É. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl., 51, Birkhäuser, Basel, 2002, 41–65.
    [9] G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks, Netw. Heterog. Media, 2 (2007), 761-777.  doi: 10.3934/nhm.2007.2.761.
    [10] G. ButtazzoF. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optim. Calc. Var., 12 (2006), 752-769.  doi: 10.1051/cocv:2006020.
    [11] G. Buttazzo and N. Varchon, On the optimal reinforcement of an elastic membrane, Riv. Mat. Univ. Parma (Ser. 7), 4 (2005), 115-125. 
    [12] Y.-H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program. (Ser. A), 106 (2006), 403-421.  doi: 10.1007/s10107-005-0595-2.
    [13] K. J. FalconerThe Geometry of Fractal Sets, Cambridge Tracts in Mathematics, 85, Cambridge University Press, Cambridge, 1986. 
    [14] S. Golab, Sur quelques points de la théorie de la longueur, Ann. Soc. Polon. Math., 7 (1929), 227-241. 
    [15] S. G. Johnson, The NLopt nonlinear-optimization package., Available from: http://ab-initio.mit.edu/nlopt.
    [16] S. J. N. Mosconi and P. Tilli, Γ-convergence for the irrigation problem, J. Convex Anal., 12 (2005), 145-158. 
    [17] E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin-New York, 1980.
    [18] J. G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, 1 (1952), 325-362.  doi: 10.1680/ipeds.1952.11362.
  • 加载中

Figures(3)

Tables(1)

SHARE

Article Metrics

HTML views(1765) PDF downloads(400) Cited by(0)

Access History

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint