Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Liquid Capacitor Based on Hafnium Oxide

Article Preview

Abstract:

In this work, we synthesize Hafnium (IV) oxide (HfO2) ink from hafnium chloride (HfCl4) powder assisted with deionized water. The poly acrylic acid (PAA) is used as surfactant to decrease the surface tension. Conversion of HfCl4 into HfO2 was detected by Raman spectroscopy and energy dispersive X-ray spectroscopy (EDS) characterization techniques. This proposed ink can be easily synthesized at a low temperature. Using the synthesis ink, a liquid capacitor is proposed, which is tested for electrochemical analysis. Indium tin oxide (ITO) coated PET is used as bottom and top current collector electrode, polydimethylsiloxane (PDMS) mold is used as separator, and HfO2 ink is used as aqueous electrolyte. Liquid capacitor is also tested on different bending diameters using bending machine from flat down to 10 mm bending curvature, which shows a stable capacitor function.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-216

Citation:

Online since:

May 2019

Export:

Price:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Jayakrishnan, G. Hodes, Thin Solid Films 440 (2003) 19–25.

Google Scholar

[2] J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386 (1997) 143–147.

Google Scholar

[3] F. Caruso, R.A. Caruso, H. Mohwald, Science 282 (1998) 1111–1114.

Google Scholar

[4] D.J. Norris, Y.A. Vlasov, Adv. Mater. 13 (2001) 371–376.

Google Scholar

[5] M. Toledano-Luque, F.L. Martínez, E. San Andrés, A. Del Prado, I. Mártil, G. Gonzá lez-Díaz, W. Bohne, J. Rohrich, E. Strub, Vacuum 82 (2008) 1391–1394.

DOI: 10.1016/j.vacuum.2008.03.083

Google Scholar

[6] H. Tsuchiy, P. Schmuki, Electrochem. Commun. 7 (2005) 49–52.

Google Scholar

[7] B. Aguirre, R.S. Vemuri, D. Zubia, M.H. Engelhard, V. Shutthananadan, K. Kamala Bharathi, C.V. Ramana, Appl. Surf. Sci. 257 (2011) 2197–2202.

DOI: 10.1016/j.apsusc.2010.09.072

Google Scholar

[8] A. Sahraneshin, S. Takami, D. Hojo, K. Minamid, T. Arita, T. Adschiri, J. Supercrit. Fluids 62 (2012) 190–196.

Google Scholar

[9] F. Sun, J. Gao, Y. Zhu, X. Pi, L. Wang, X. Liu, Y. Qin, Scientific Reports, 7 (2017) 40990.

Google Scholar

[10] K. Hatakeyama, H. Kaneko, and K. Nishioka, International Journal of Materials, Mechanics and Manufacturing, 4 (2016).

Google Scholar

[11] P. Lu, D. Xue, H. Yang, Y. Liu, International Journal of Smart and Nano Materials, 4 (2013) 2-26.

Google Scholar

[12] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, Journal of Chemical Education, 95 (2018) 197-206.

DOI: 10.1021/acs.jchemed.7b00361

Google Scholar

[13] T. Tan, Z. Liu, H. Lu, W. Liu, H. Tian, Opt. Mater. 32 (2010) 432–435.

Google Scholar

[14] B.K. Kim, H. Hamaguchi, Mater. Res. Bull. 32 (10) (1997) 1367–1370.

Google Scholar