Quantum Physics
[Submitted on 22 Jul 2015 (v1), last revised 6 Nov 2015 (this version, v3)]
Title:Some Nearly Quantum Theories
View PDFAbstract:We consider possible non-signaling composites of probabilistic models based on euclidean Jordan algebras. Subject to some reasonable constraints, we show that no such composite exists having the exceptional Jordan algebra as a direct summand. We then construct several dagger compact categories of such Jordan-algebraic models. One of these neatly unifies real, complex and quaternionic mixed-state quantum mechanics, with the exception of the quaternionic "bit". Another is similar, except in that (i) it excludes the quaternionic bit, and (ii) the composite of two complex quantum systems comes with an extra classical bit. In both of these categories, states are morphisms from systems to the tensor unit, which helps give the categorical structure a clear operational interpretation. A no-go result shows that the first of these categories, at least, cannot be extended to include spin factors other than the (real, complex, and quaternionic) quantum bits, while preserving the representation of states as morphisms. The same is true for attempts to extend the second category to even-dimensional spin-factors. Interesting phenomena exhibited by some composites in these categories include failure of local tomography, supermultiplicativity of the maximal number of mutually distinguishable states, and mixed states whose marginals are pure.
Submission history
From: Matthew A. Graydon [view email] [via Selena Clancy as proxy][v1] Wed, 22 Jul 2015 18:17:09 UTC (16 KB)
[v2] Sun, 26 Jul 2015 06:26:34 UTC (16 KB)
[v3] Fri, 6 Nov 2015 05:10:24 UTC (19 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.