Computer Science > Programming Languages
[Submitted on 2 Jul 2022]
Title:The Programming of Algebra
View PDFAbstract:We present module theory and linear maps as a powerful generalised and computationally efficient framework for the relational data model, which underpins today's relational database systems. Based on universal constructions of modules we obtain compact and computationally efficient data structures for data collections corresponding to union and deletion, repeated union, Cartesian product and key-indexed data. Free modules naturally give rise to polysets, which generalise multisets and facilitate expressing database queries as multilinear maps with asymptotically efficient evaluation on polyset constructors. We introduce compact maps as a way of representing infinite (poly)sets constructible from an infinite base set and its elements by addition and subtraction. We show how natural joins generalise to algebraic joins, while intersection is implemented by a novel algorithm on nested compact maps that carefully avoids visiting parts of the input that do not contribute to the eventual output. Our algebraic framework leads to a worst-case optimal evaluation of cyclic relational queries, which is known to be impossible using textbook query optimisers that operate on lists of records only.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Sat, 2 Jul 2022 14:35:52 UTC (37 KB)
Current browse context:
cs.PL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.