Computer Science > Performance
[Submitted on 21 Aug 2023]
Title:Algebraic Reasoning About Timeliness
View PDFAbstract:Designing distributed systems to have predictable performance under high load is difficult because of resource exhaustion, non-linearity, and stochastic behaviour. Timeliness, i.e., delivering results within defined time bounds, is a central aspect of predictable performance. In this paper, we focus on timeliness using the DELTA-Q Systems Development paradigm (DELTA-QSD, developed by PNSol), which computes timeliness by modelling systems observationally using so-called outcome expressions. An outcome expression is a compositional definition of a system's observed behaviour in terms of its basic operations. Given the behaviour of the basic operations, DELTA-QSD efficiently computes the stochastic behaviour of the whole system including its timeliness.
This paper formally proves useful algebraic properties of outcome expressions w.r.t. timeliness. We prove the different algebraic structures the set of outcome expressions form with the different DELTA-QSD operators and demonstrate why those operators do not form richer structures. We prove or disprove the set of all possible distributivity results on outcome expressions. On our way for disproving 8 of those distributivity results, we develop a technique called properisation, which gives rise to the first body of maths for improper random variables. Finally, we also prove 14 equivalences that have been used in the past in the practice of DELTA-QSD.
An immediate benefit is rewrite rules that can be used for design exploration under established timeliness equivalence. This work is part of an ongoing project to disseminate and build tool support for DELTA-QSD. The ability to rewrite outcome expressions is essential for efficient tool support.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Mon, 21 Aug 2023 11:47:59 UTC (254 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.