LIPIcs.CP.2024.13.pdf
- Filesize: 1.41 MB
- 17 pages
Solution counting and solution space integration over linear constraints are important problems with many applications. Previous works addressed either only counting integer points in polytopes (integer counting) with integer variables or alternatively only computing the volume of polytopes (solution space integration) on variables over the reals, including approximating the integer count via a polytope’s volume. We are not aware of a non-trivial algorithm which addresses the mixed case, where linear constraints are over mixed integer and real variables. In this paper, we propose a new randomized algorithm to approximate guarantees (bounds) of integer solution counts. Then we present upper and lower bounds for solution space integration over mixed-integer linear constraints. Thus, proposed algorithms can be extended to mixed-integer cases as well. The experiments show that approximations are often very close to exact results in practice, and bounds approximated by our algorithm are often tight and useful.
Feedback for Dagstuhl Publishing