LIPIcs.CP.2024.14.pdf
- Filesize: 0.71 MB
- 21 pages
In facility location problems we seek to locate a set of facilities in an area, where clients may be present, so that some criterion is optimized. For instance, in the p-center problem we seek to minimize the maximum distance between any client and its closest facility, whereas in the p-dispersion problem we seek to maximize the minimum distance between any two facilities. Hence, in the former we have a minmax objective, whereas in the latter we have a maxmin objective. Recently, a variant of p-dispersion where distance constraints exist between facilities was studied from a CP and ILP perspective. An incomplete CP solver that uses a greedy heuristic to prune branches was shown to significantly outperform Gurobi and OR-Tools in terms of execution time, although it failed to discover optimal or near-optimal solutions in many instances. We enhance this work in two directions, regarding the effectiveness and the applicability of the approach. We first show how local search can be used to obtain better estimations of the bound at each node, resulting in more focused pruning, which allows for optimal or near-optimal solutions to be discovered in many more instances. Then, we demonstrate how the framework can be applied on the p-center problem with distance constraints, comparing it to ILP and CP models implemented in Gurobi and OR-Tools, respectively.
Feedback for Dagstuhl Publishing