Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Dimensionality Reduction for k-Distance Applied to Persistent Homology

Authors Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, Martin Lotz



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2020.10.pdf
  • Filesize: 483 kB
  • 15 pages

Document Identifiers

Author Details

Shreya Arya
  • Duke University, Durham, NC, USA
Jean-Daniel Boissonnat
  • Université Côte d'Azur, INRIA, Sophia-Antipolis, France
Kunal Dutta
  • Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
Martin Lotz
  • Mathematics Institute, University of Warwick, Coventry, United Kingdom

Acknowledgements

We thank the reviewers for their helpful comments and suggestions.

Cite As Get BibTex

Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, and Martin Lotz. Dimensionality Reduction for k-Distance Applied to Persistent Homology. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020) https://doi.org/10.4230/LIPIcs.SoCG.2020.10

Abstract

Given a set P of n points and a constant k, we are interested in computing the persistent homology of the Čech filtration of P for the k-distance, and investigate the effectiveness of dimensionality reduction for this problem, answering an open question of Sheehy [Proc. SoCG, 2014]. We show that any linear transformation that preserves pairwise distances up to a (1±ε) multiplicative factor, must preserve the persistent homology of the Čech filtration up to a factor of (1-ε)^{-1}. Our results also show that the Vietoris-Rips and Delaunay filtrations for the k-distance, as well as the Čech filtration for the approximate k-distance of Buchet et al. are preserved up to a (1±ε) factor.
We also prove extensions of our main theorem, for point sets (i) lying in a region of bounded Gaussian width or (ii) on a low-dimensional manifold, obtaining the target dimension bounds of Lotz [Proc. Roy. Soc. , 2019] and Clarkson [Proc. SoCG, 2008 ] respectively.

Subject Classification

ACM Subject Classification
  • Theory of computation
  • Theory of computation → Computational geometry
Keywords
  • Dimensionality reduction
  • Johnson-Lindenstrauss lemma
  • Topological Data Analysis
  • Persistent Homology
  • k-distance
  • distance to measure

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Dimitris Achlioptas. Database-friendly random projections. In Peter Buneman, editor, Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23, 2001, Santa Barbara, California, USA. ACM, 2001. URL: https://doi.org/10.1145/375551.375608.
  2. Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput., 39(1):302-322, 2009. URL: https://doi.org/10.1137/060673096.
  3. Noga Alon and Bo'az Klartag. Optimal compression of approximate inner products and dimension reduction. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 639-650. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/FOCS.2017.65.
  4. Franz Aurenhammer. A new duality result concerning voronoi diagrams. Discret. Comput. Geom., 5:243-254, 1990. URL: https://doi.org/10.1007/BF02187788.
  5. Richard G. Baraniuk and Michael B. Wakin. Random projections of smooth manifolds. Found. Comput. Math., 9(1):51-77, 2009. URL: https://doi.org/10.1007/s10208-007-9011-z.
  6. Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities - A Nonasymptotic Theory of Independence. Oxford University Press, 2013. URL: https://doi.org/10.1093/acprof:oso/9780199535255.001.0001.
  7. Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald R. Sheehy. Efficient and robust persistent homology for measures. Comput. Geom., 58:70-96, 2016. URL: https://doi.org/10.1016/j.comgeo.2016.07.001.
  8. Mickaël Buchet, Tamal K. Dey, Jiayuan Wang, and Yusu Wang. Declutter and resample: Towards parameter free denoising. JoCG, 9(2):21-46, 2018. URL: https://doi.org/10.20382/jocg.v9i2a3.
  9. Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability measures. Found. Comput. Math., 11(6):733-751, 2011. URL: https://doi.org/10.1007/s10208-011-9098-0.
  10. Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Y. Oudot. The Structure and Stability of Persistence Modules. Springer Briefs in Mathematics. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-42545-0.
  11. Frédéric Chazal and Steve Oudot. Towards persistence-based reconstruction in euclidean spaces. In Monique Teillaud, editor, Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008, pages 232-241. ACM, 2008. URL: https://doi.org/10.1145/1377676.1377719.
  12. Kenneth L. Clarkson. Tighter bounds for random projections of manifolds. In Monique Teillaud, editor, Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008, pages 39-48. ACM, 2008. URL: https://doi.org/10.1145/1377676.1377685.
  13. Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational geometry, II. Discret. Comput. Geom., 4:387-421, 1989. URL: https://doi.org/10.1007/BF02187740.
  14. Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random Struct. Algorithms, 22(1):60-65, 2003. URL: https://doi.org/10.1002/rsa.10073.
  15. Sjoerd Dirksen. Dimensionality reduction with subgaussian matrices: A unified theory. Found. Comput. Math., 16(5):1367-1396, 2016. URL: https://doi.org/10.1007/s10208-015-9280-x.
  16. Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.
  17. Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simplification. Discret. Comput. Geom., 28(4):511-533, 2002. URL: https://doi.org/10.1007/s00454-002-2885-2.
  18. Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis. Journal of the American Mathematical Society, 29(4):983-1049, 2016. URL: https://doi.org/10.1090/jams/852.
  19. Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, 2013. URL: https://doi.org/10.1007/978-0-8176-4948-7.
  20. C. Giraud. Introduction to High-Dimensional Statistics. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 2014. URL: https://www.crcpress.com/Introduction-to-High-Dimensional-Statistics/Giraud/p/book/9781482237948.
  21. Y. Gordon. On milman’s inequality and random subspaces which escape through a mesh in rn. In Joram Lindenstrauss and Vitali D. Milman, editors, Geometric Aspects of Functional Analysis, pages 84-106, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/BFb0081737.
  22. Leonidas J. Guibas, Dmitriy Morozov, and Quentin Mérigot. Witnessed k-distance. Discret. Comput. Geom., 49(1):22-45, 2013. URL: https://doi.org/10.1007/s00454-012-9465-x.
  23. Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh S. Vempala. Locality-preserving hashing in multidimensional spaces. In Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 618-625. ACM, 1997. URL: https://doi.org/10.1145/258533.258656.
  24. William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26(189-206):1, 1984. URL: https://doi.org/10.1007/BF02764938.
  25. Martin Lotz. Persistent homology for low-complexity models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2230):20190081, 2019. URL: https://doi.org/10.1098/rspa.2019.0081.
  26. Jiří Matoušek. On variants of the Johnson Lindenstrauss lemma. Random Structures & Algorithms, 33(2):142-156, 2008. URL: https://doi.org/10.1002/rsa.20218.
  27. Steve Y. Oudot. Persistence Theory - From Quiver Representations to Data Analysis, volume 209 of Mathematical surveys and monographs. American Mathematical Society, 2015. URL: http://bookstore.ams.org/surv-209/.
  28. Jeff M. Phillips, Bei Wang, and Yan Zheng. Geometric inference on kernel density estimates. In Lars Arge and János Pach, editors, 31st International Symposium on Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, volume 34 of LIPIcs, pages 857-871. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.SOCG.2015.857.
  29. Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 143-152. IEEE Computer Society, 2006. URL: https://doi.org/10.1109/FOCS.2006.37.
  30. Donald R. Sheehy. The persistent homology of distance functions under random projection. In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry, SOCG'14, Kyoto, Japan, June 08 - 11, 2014, page 328. ACM, 2014. URL: https://doi.org/10.1145/2582112.2582126.
  31. Nakul Verma. A note on random projections for preserving paths on a manifold. Technical report, UC San Diego, 2011. URL: https://csetechrep.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2011-0971.
  32. Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. URL: https://doi.org/10.1017/9781108231596.
  33. Ji Zhang. Advancements of outlier detection: A survey. EAI Endorsed Trans. Scalable Information Systems, 1(1):e2, 2013. URL: https://doi.org/10.4108/trans.sis.2013.01-03.e2.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail