Computer Science > Information Retrieval
[Submitted on 30 Jun 2008 (v1), last revised 7 Mar 2009 (this version, v2)]
Title:Automatic Metadata Generation using Associative Networks
View PDFAbstract: In spite of its tremendous value, metadata is generally sparse and incomplete, thereby hampering the effectiveness of digital information services. Many of the existing mechanisms for the automated creation of metadata rely primarily on content analysis which can be costly and inefficient. The automatic metadata generation system proposed in this article leverages resource relationships generated from existing metadata as a medium for propagation from metadata-rich to metadata-poor resources. Because of its independence from content analysis, it can be applied to a wide variety of resource media types and is shown to be computationally inexpensive. The proposed method operates through two distinct phases. Occurrence and co-occurrence algorithms first generate an associative network of repository resources leveraging existing repository metadata. Second, using the associative network as a substrate, metadata associated with metadata-rich resources is propagated to metadata-poor resources by means of a discrete-form spreading activation algorithm. This article discusses the general framework for building associative networks, an algorithm for disseminating metadata through such networks, and the results of an experiment and validation of the proposed method using a standard bibliographic dataset.
Submission history
From: Marko A. Rodriguez [view email][v1] Mon, 30 Jun 2008 21:23:28 UTC (179 KB)
[v2] Sat, 7 Mar 2009 01:20:48 UTC (179 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.