Computer Science > Computational Complexity
[Submitted on 27 Jul 2009 (v1), last revised 29 Jun 2011 (this version, v2)]
Title:Complexity Classes of Equivalence Problems Revisited
View PDFAbstract:To determine if two lists of numbers are the same set, we sort both lists and see if we get the same result. The sorted list is a canonical form for the equivalence relation of set equality. Other canonical forms arise in graph isomorphism algorithms, and the equality of permutation groups given by generators. To determine if two graphs are cospectral (have the same eigenvalues), however, we compute their characteristic polynomials and see if they are the same; the characteristic polynomial is a complete invariant for the equivalence relation of cospectrality. This is weaker than a canonical form, and it is not known whether a polynomial-time canonical form for cospectrality exists. Note that it is a priori possible for an equivalence relation to be decidable in polynomial time without either a complete invariant or canonical form.
Blass and Gurevich (SIAM J. Comput., 1984) ask whether these conditions on equivalence relations -- having an FP canonical form, having an FP complete invariant, and simply being in P -- are in fact different. They showed that this question requires non-relativizing techniques to resolve. Here we extend their results, and give new connections to probabilistic and quantum computation.
Submission history
From: Joshua Grochow [view email][v1] Mon, 27 Jul 2009 21:30:02 UTC (23 KB)
[v2] Wed, 29 Jun 2011 04:42:54 UTC (31 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.