Condensed Matter > Quantum Gases
[Submitted on 11 Jun 2011 (v1), last revised 1 Nov 2011 (this version, v2)]
Title:Antiferromagnetism and superfluidity of a dipolar Fermi gas in a 2D optical lattice
View PDFAbstract:In a dipolar Fermi gas, the dipole-dipole interaction between fermions can be turned into a dipolar Ising interaction between pseduospins in the presence of an AC electric field. When trapped in a 2D optical lattice, such a dipolar Fermi gas has a very rich phase diagram at zero temperature, due to the competition between antiferromagnetism and superfluidity. At half filling, the antiferromagnetic state is the favored ground state. The superfluid state appears as the ground state at a smaller filling factor. In between there is a phase-separated region. The order parameter of the superfluid state can display different symmetries depending on the filling factor and interaction strength, including d-wave ($d$), extend s-wave ($xs$), or their linear combination ($xs+i\times d$). The implication for the current experiment is discussed.
Submission history
From: Lan Yin [view email][v1] Sat, 11 Jun 2011 03:31:34 UTC (404 KB)
[v2] Tue, 1 Nov 2011 03:26:06 UTC (400 KB)
Current browse context:
cond-mat.quant-gas
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.