Condensed Matter > Statistical Mechanics
[Submitted on 26 Jun 2011 (v1), last revised 5 Dec 2011 (this version, v2)]
Title:Thermalization and Quantum Correlations in Exactly Solvable Models
View PDFAbstract:The generalized Gibbs ensemble introduced for describing few body correlations in exactly solvable systems following a quantum quench is related to the nonergodic way in which operators sample, in the limit of infinite time after the quench, the quantum correlations present in the initial state. The nonergodicity of the correlations is thus shown \emph{analytically} to imply the equivalence with the generalized Gibbs ensemble for quantum Ising and
XX spin chains as well as for the Luttinger model the thermodynamic limit, and for a broad class of initial states and correlation functions of both local and nonlocal operators.
Submission history
From: Miguel A. Cazalilla [view email][v1] Sun, 26 Jun 2011 10:29:57 UTC (12 KB)
[v2] Mon, 5 Dec 2011 09:13:39 UTC (719 KB)
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.