Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 30 Jan 2012 (v1), last revised 2 Feb 2012 (this version, v2)]
Title:Bunching and anti-bunching in electronic transport
View PDFAbstract:In quantum optics the $g^{(2)}$-function is a standard tool to investigate photon emission statistics. We define a $g^{(2)}$-function for electronic transport and use it to investigate the bunching and anti-bunching of electron currents. Importantly, we show that super-Poissonian electron statistics do not necessarily imply electron bunching, and that sub-Poissonian statistics do not imply anti-bunching. We discuss the information contained in $g^{(2)}(\tau)$ for several typical examples of transport through nano-structures such as few-level quantum dots.
Submission history
From: Clive Emary [view email][v1] Mon, 30 Jan 2012 19:09:25 UTC (854 KB)
[v2] Thu, 2 Feb 2012 10:37:28 UTC (854 KB)
Current browse context:
cond-mat.mes-hall
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.