Mathematics > Statistics Theory
[Submitted on 5 Feb 2013]
Title:When are the most informative components for inference also the principal components?
View PDFAbstract:Which components of the singular value decomposition of a signal-plus-noise data matrix are most informative for the inferential task of detecting or estimating an embedded low-rank signal matrix? Principal component analysis ascribes greater importance to the components that capture the greatest variation, i.e., the singular vectors associated with the largest singular values. This choice is often justified by invoking the Eckart-Young theorem even though that work addresses the problem of how to best represent a signal-plus-noise matrix using a low-rank approximation and not how to best_infer_ the underlying low-rank signal component.
Here we take a first-principles approach in which we start with a signal-plus-noise data matrix and show how the spectrum of the noise-only component governs whether the principal or the middle components of the singular value decomposition of the data matrix will be the informative components for inference. Simply put, if the noise spectrum is supported on a connected interval, in a sense we make precise, then the use of the principal components is justified. When the noise spectrum is supported on multiple intervals, then the middle components might be more informative than the principal components.
The end result is a proper justification of the use of principal components in the setting where the noise matrix is i.i.d. Gaussian and the identification of scenarios, generically involving heterogeneous noise models such as mixtures of Gaussians, where the middle components might be more informative than the principal components so that they may be exploited to extract additional processing gain. Our results show how the blind use of principal components can lead to suboptimal or even faulty inference because of phase transitions that separate a regime where the principal components are informative from a regime where they are uninformative.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.