Computer Science > Graphics
[Submitted on 16 Feb 2013]
Title:k-d Darts: Sampling by k-Dimensional Flat Searches
View PDFAbstract:We formalize the notion of sampling a function using k-d darts. A k-d dart is a set of independent, mutually orthogonal, k-dimensional subspaces called k-d flats. Each dart has d choose k flats, aligned with the coordinate axes for efficiency. We show that k-d darts are useful for exploring a function's properties, such as estimating its integral, or finding an exemplar above a threshold. We describe a recipe for converting an algorithm from point sampling to k-d dart sampling, assuming the function can be evaluated along a k-d flat.
We demonstrate that k-d darts are more efficient than point-wise samples in high dimensions, depending on the characteristics of the sampling domain: e.g. the subregion of interest has small volume and evaluating the function along a flat is not too expensive. We present three concrete applications using line darts (1-d darts): relaxed maximal Poisson-disk sampling, high-quality rasterization of depth-of-field blur, and estimation of the probability of failure from a response surface for uncertainty quantification. In these applications, line darts achieve the same fidelity output as point darts in less time. We also demonstrate the accuracy of higher dimensional darts for a volume estimation problem. For Poisson-disk sampling, we use significantly less memory, enabling the generation of larger point clouds in higher dimensions.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.