Astrophysics > Astrophysics of Galaxies
[Submitted on 8 Mar 2013]
Title:Probing the role of polycyclic aromatic hydrocarbons in the photoelectric heating within photodissociation regions
View PDFAbstract:We observationally investigate the relation between the photoelectric heating efficiency in PDRs and the charge of PAHs, which are considered to play a key role in photoelectric heating. Using PACS onboard Herschel, we observed six PDRs spanning a wide range of FUV radiation fields (G_0=100-10^5). To measure the photoelectric heating efficiency, we obtained the intensities of the main cooling lines, i.e., the [OI]63um, 145um, and [CII]158um, as well as the FIR continuum intensity. We used Spitzer/IRS spectroscopic mapping observations to investigate the MIR PAH features in the same regions. We decomposed the MIR PAH emission into that of neutral (PAH^0) and positively ionized (PAH^+) species to derive the fraction of the positively charged PAHs, and compare it to the photoelectric heating efficiency. The heating efficiency traced by ([OI]63um+[OI]145um+[CII]158um) / TIR, ranges between 0.1% and 0.9% in different sources, and the fraction of PAH^+ relative to (PAH^0 + PAH^+) spans from 0(+11)% to 87(+/-10)%. All positions with a high PAH^+ fraction show a low heating efficiency, and all positions with a high heating efficiency have a low PAH^+ fraction, supporting the scenario in which a positive grain charge results in a decreased heating efficiency. Theoretical estimates of the photoelectric heating efficiency show a stronger dependence on the charging parameter gamma=G_0 T^{1/2}/n_e than the observed efficiency reported in this study, and the discrepancy is significant at low gamma. The photoelectric heating efficiency on PAHs, traced by ([OI]63um+[OI]145um+[CII]158um) / (PAH+[OI]63um+[OI]145um+[CII]158um), shows a much better match between the observations and the theoretical estimates. The good agreement of the photoelectric heating efficiency on PAHs with a theoretical model indicates the dominant contribution of PAHs to the photoelectric heating. (abridged for arXiv)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.