Astrophysics > Solar and Stellar Astrophysics
[Submitted on 3 Sep 2013]
Title:The Kepler-SEP Mission: Harvesting the South Ecliptic Pole large-amplitude variables with Kepler
View PDFAbstract:As a response to the white paper call, we propose to turn Kepler to the South Ecliptic Pole (SEP) and observe thousands of large amplitude variables for years with high cadence in the frame of the Kepler-SEP Mission. The degraded pointing stability will still allow observing these stars with reasonable (probably better than mmag) accuracy. Long-term continuous monitoring already proved to be extremely helpful to investigate several areas of stellar astrophysics. Space-based missions opened a new window to the dynamics of pulsation in several class of pulsating variable stars and facilitated detailed studies of eclipsing binaries. The main aim of this mission is to better understand the fascinating dynamics behind various stellar pulsational phenomena (resonances, mode coupling, chaos, mode selection) and interior physics (turbulent convection, opacities). This will also improve the applicability of these astrophysical tools for distance measurements, population and stellar evolution studies. We investigated the pragmatic details of such a mission and found a number of advantages: minimal reprogramming of the flight software, a favorable field of view, access to both galactic and LMC objects. However, the main advantage of the SEP field comes from the large sample of well classified targets, mainly through OGLE. Synergies and significant overlap (spatial, temporal and in brightness) with both ground- (OGLE, LSST) and space-based missions (GAIA, TESS) will greatly enhance the scientific value of the Kepler-SEP mission. GAIA will allow full characterization of the distance indicators. TESS will continuously monitor this field for at least one year, and together with the proposed mission provide long time series that cannot be obtained by other means. If Kepler-SEP program is successful, there is a possibility to place one of the so-called LSST "deep-drilling" fields in this region.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.