Quantum Physics
[Submitted on 26 Mar 2014]
Title:Higher order nonclassicalities in a codirectional nonlinear optical coupler: Quantum entanglement, squeezing and antibunching
View PDFAbstract:Higher order nonclassical properties of fields propagating through a codirectional asymmetric nonlinear optical coupler which is prepared by combining a linear wave guide and a nonlinear (quadratic) wave guide operated by second harmonic generation are studied. A completely quantum mechanical description is used here to describe the system. Closed form analytic solutions of Heisenberg's equations of motion for various modes are used to show the existence of higher order antibunching, higher order squeezing, higher order two-mode and multi-mode entanglement in the asymmetric nonlinear optical coupler. It is also shown that nonclassical properties of light can transfer from a nonlinear wave guide to a linear wave guide.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.