Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 19 Nov 2015]
Title:High performance sensors based on resistance fluctuations of single layer graphene transistors
View PDFAbstract:One of the most interesting predicted applications of graphene monolayer based devices is as high quality sensors. In this letter we show, through systematic experiments, a chemical vapor sensor based on the measurement of low frequency resistance fluctuations of single layer graphene field-effect-transistor (SLG-FET) devices. The sensor has extremely high sensitivity, very high specificity, high fidelity and fast response times. The performance of the device using this scheme of measurement (which uses resistance fluctuations as the detection parameter) is more than two orders of magnitude better than a detection scheme where changes in the average value of the resistance is monitored. We propose a number-density fluctuation based model to explain the superior characteristics of noise measurement based detection scheme presented in this article.
Submission history
From: Kazi Rafsanjani Amin [view email][v1] Thu, 19 Nov 2015 15:44:13 UTC (4,758 KB)
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.