Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 May 2016]
Title:Visual Saliency Based on Scale-Space Analysis in the Frequency Domain
View PDFAbstract:We address the issue of visual saliency from three perspectives. First, we consider saliency detection as a frequency domain analysis problem. Second, we achieve this by employing the concept of {\it non-saliency}. Third, we simultaneously consider the detection of salient regions of different size. The paper proposes a new bottom-up paradigm for detecting visual saliency, characterized by a scale-space analysis of the amplitude spectrum of natural images. We show that the convolution of the {\it image amplitude spectrum} with a low-pass Gaussian kernel of an appropriate scale is equivalent to such an image saliency detector. The saliency map is obtained by reconstructing the 2-D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. A Hypercomplex Fourier Transform performs the analysis in the frequency domain. Using available databases, we demonstrate experimentally that the proposed model can predict human fixation data. We also introduce a new image database and use it to show that the saliency detector can highlight both small and large salient regions, as well as inhibit repeated distractors in cluttered images. In addition, we show that it is able to predict salient regions on which people focus their attention.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.