Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 27 Oct 2016 (v1), last revised 19 Dec 2016 (this version, v3)]
Title:Is the expansion of the universe accelerating? All signs point to yes
View PDFAbstract:The accelerating expansion of the universe is one of the most profound discoveries in modern cosmology, pointing to a universe in which 70% of the mass-energy density has an unknown form spread uniformly across the universe. This result has been well established using a combination of cosmological probes (e.g., Planck Collaboration et al. 2016), resulting in a "standard model" of modern cosmology that is a combination of a cosmological constant with cold dark matter and baryons. The first compelling evidence for the acceleration came in the late 1990's, when two independent teams studying type Ia supernovae discovered that distant SNe Ia were dimmer than expected. The combined analysis of modern cosmology experiments, including SNe Ia, the Hubble constant, baryon acoustic oscillations, and the cosmic microwave background has now measured the contributions of matter and the cosmological constant to the energy density of the universe to better than 0.01, providing a secure measurement of acceleration. A recent study (Trøst Nielsen et al. 2015) has claimed that the evidence for acceleration from SNe Ia is "marginal." Here we demonstrate errors in that analysis which reduce the acceleration significance from SNe Ia, and further demonstrate that conservative constraints on the curvature or matter density of the universe increase the significance even more. Analyzing the Joint Light-curve Analysis supernova sample, we find 4.2{\sigma} evidence for acceleration with SNe Ia alone, and 11.2{\sigma} in a flat universe. With our improved supernova analysis and by not rejecting all other cosmological constraints, we find that acceleration is quite secure.
Submission history
From: David Rubin [view email][v1] Thu, 27 Oct 2016 19:58:27 UTC (1,987 KB)
[v2] Mon, 31 Oct 2016 19:07:17 UTC (1,987 KB)
[v3] Mon, 19 Dec 2016 20:55:44 UTC (2,329 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.