Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Jan 2017]
Title:Universal representations:The missing link between faces, text, planktons, and cat breeds
View PDFAbstract:With the advent of large labelled datasets and high-capacity models, the performance of machine vision systems has been improving rapidly. However, the technology has still major limitations, starting from the fact that different vision problems are still solved by different models, trained from scratch or fine-tuned on the target data. The human visual system, in stark contrast, learns a universal representation for vision in the early life of an individual. This representation works well for an enormous variety of vision problems, with little or no change, with the major advantage of requiring little training data to solve any of them. In this paper we investigate whether neural networks may work as universal representations by studying their capacity in relation to the “size†of a large combination of vision problems. We do so by showing that a single neural network can learn simultaneously several very different visual domains (from sketches to planktons and MNIST digits) as well as, or better than, a number of specialized networks. However, we also show that this requires to carefully normalize the information in the network, by using domain-specific scaling factors or, more generically, by using an instance normalization layer.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.