Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Jun 2017]
Title:Deep Semantics-Aware Photo Adjustment
View PDFAbstract:Automatic photo adjustment is to mimic the photo retouching style of professional photographers and automatically adjust photos to the learned style. There have been many attempts to model the tone and the color adjustment globally with low-level color statistics. Also, spatially varying photo adjustment methods have been studied by exploiting high-level features and semantic label maps. Those methods are semantics-aware since the color mapping is dependent on the high-level semantic context. However, their performance is limited to the pre-computed hand-crafted features and it is hard to reflect user's preference to the adjustment. In this paper, we propose a deep neural network that models the semantics-aware photo adjustment. The proposed network exploits bilinear models that are the multiplicative interaction of the color and the contexual features. As the contextual features we propose the semantic adjustment map, which discovers the inherent photo retouching presets that are applied according to the scene context. The proposed method is trained using a robust loss with a scene parsing task. The experimental results show that the proposed method outperforms the existing method both quantitatively and qualitatively. The proposed method also provides users a way to retouch the photo by their own likings by giving customized adjustment maps.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.