Computer Science > Information Retrieval
[Submitted on 7 May 2018 (v1), last revised 19 Aug 2018 (this version, v3)]
Title:An Axiomatic Analysis of Diversity Evaluation Metrics: Introducing the Rank-Biased Utility Metric
View PDFAbstract:Many evaluation metrics have been defined to evaluate the effectiveness ad-hoc retrieval and search result diversification systems. However, it is often unclear which evaluation metric should be used to analyze the performance of retrieval systems given a specific task. Axiomatic analysis is an informative mechanism to understand the fundamentals of metrics and their suitability for particular scenarios. In this paper, we define a constraint-based axiomatic framework to study the suitability of existing metrics in search result diversification scenarios. The analysis informed the definition of Rank-Biased Utility (RBU) -- an adaptation of the well-known Rank-Biased Precision metric -- that takes into account redundancy and the user effort associated to the inspection of documents in the ranking. Our experiments over standard diversity evaluation campaigns show that the proposed metric captures quality criteria reflected by different metrics, being suitable in the absence of knowledge about particular features of the scenario under study.
Submission history
From: Damiano Spina [view email][v1] Mon, 7 May 2018 03:50:11 UTC (64 KB)
[v2] Fri, 18 May 2018 02:22:55 UTC (64 KB)
[v3] Sun, 19 Aug 2018 07:38:20 UTC (64 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.