Quantitative Biology > Populations and Evolution
[Submitted on 12 Jul 2018 (v1), last revised 15 Nov 2018 (this version, v3)]
Title:Predictability of the imitative learning trajectories
View PDFAbstract:The fitness landscape metaphor plays a central role on the modeling of optimizing principles in many research fields, ranging from evolutionary biology, where it was first introduced, to management research. Here we consider the ensemble of trajectories of the imitative learning search, in which agents exchange information on their fitness and imitate the fittest agent in the population aiming at reaching the global maximum of the fitness landscape. We assess the degree to which the starting and ending points determine the learning trajectories using two measures, namely, the predictability that yields the probability that two randomly chosen trajectories are the same, and the mean path divergence that gauges the dissimilarity between two learning trajectories. We find that the predictability is greater in rugged landscapes than in smooth ones. The mean path divergence, however, is strongly affected by the search parameters -- population size and imitation propensity -- that obliterate the influence of the underlying landscape. The learning trajectories become more deterministic, in the sense that there are fewer distinct trajectories and those trajectories are more similar to each other, with increasing population size and imitation propensity. In addition, we find that the roughness of the learning trajectories, which measures the deviation from additivity of the fitness function, is always greater than the roughness estimated over the entire fitness landscape.
Submission history
From: Jose Fontanari [view email][v1] Thu, 12 Jul 2018 23:32:47 UTC (50 KB)
[v2] Mon, 16 Jul 2018 23:46:40 UTC (50 KB)
[v3] Thu, 15 Nov 2018 17:42:47 UTC (72 KB)
Current browse context:
q-bio.PE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.