Computer Science > Information Theory
[Submitted on 15 Sep 2018]
Title:Algebraic Optimization of Binary Spatially Coupled Measurement Matrices for Interval Passing
View PDFAbstract:We consider binary spatially coupled (SC) low density measurement matrices for low complexity reconstruction of sparse signals via the interval passing algorithm (IPA). The IPA is known to fail due to the presence of harmful sub-structures in the Tanner graph of a binary sparse measurement matrix, so called termatiko sets. In this work we construct array-based (AB) SC sparse measurement matrices via algebraic lifts of graphs, such that the number of termatiko sets in the Tanner graph is minimized. To this end, we show for the column-weight-three case that the most critical termatiko sets can be removed by eliminating all length-12 cycles associated with the Tanner graph, via algebraic lifting. As a consequence, IPA-based reconstruction with SC measurement matrices is able to provide an almost error free reconstruction for significantly denser signal vectors compared to uncoupled AB LDPC measurement matrices.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.