Computer Science > Computation and Language
[Submitted on 2 Nov 2018]
Title:Improving the Robustness of Speech Translation
View PDFAbstract:Although neural machine translation (NMT) has achieved impressive progress recently, it is usually trained on the clean parallel data set and hence cannot work well when the input sentence is the production of the automatic speech recognition (ASR) system due to the enormous errors in the source. To solve this problem, we propose a simple but effective method to improve the robustness of NMT in the case of speech translation. We simulate the noise existing in the realistic output of the ASR system and inject them into the clean parallel data so that NMT can work under similar word distributions during training and testing. Besides, we also incorporate the Chinese Pinyin feature which is easy to get in speech translation to further improve the translation performance. Experiment results show that our method has a more stable performance and outperforms the baseline by an average of 3.12 BLEU on multiple noisy test sets, even while achieves a generalization improvement on the WMT'17 Chinese-English test set.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.