Computer Science > Performance
[Submitted on 23 Jan 2019]
Title:High order concentrated non-negative matrix-exponential functions
View PDFAbstract:Highly concentrated functions play an important role in many research fields including control system analysis and physics, and they turned out to be the key idea behind inverse Laplace transform methods as well.
This paper uses the matrix-exponential family of functions to create highly concentrated functions, whose squared coefficient of variation (SCV) is very low. In the field of stochastic modeling, matrix-exponential functions have been used for decades. They have many advantages: they are easy to manipulate, always non-negative, and integrals involving matrix-exponential functions often have closed-form solutions. For the time being there is no symbolic construction available to obtain the most concentrated matrix-exponential functions, and the numerical optimization-based approach has many pitfalls, too.
In this paper, we present a numerical optimization-based procedure to construct highly concentrated matrix-exponential functions. To make the objective function explicit and easy to evaluate we introduce and use a new representation called hyper-trigonometric representation. This representation makes it possible to achieve very low SCV.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.