Computer Science > Cryptography and Security
[Submitted on 11 Feb 2019]
Title:Analyzing, Comparing, and Detecting Emerging Malware: A Graph-based Approach
View PDFAbstract:The growth in the number of Android and Internet of Things (IoT) devices has witnessed a parallel increase in the number of malicious software (malware), calling for new analysis approaches. We represent binaries using their graph properties of the Control Flow Graph (CFG) structure and conduct an in-depth analysis of malicious graphs extracted from the Android and IoT malware to understand their differences. Using 2,874 and 2,891 malware binaries corresponding to IoT and Android samples, we analyze both general characteristics and graph algorithmic properties. Using the CFG as an abstract structure, we then emphasize various interesting findings, such as the prevalence of unreachable code in Android malware, noted by the multiple components in their CFGs, and larger number of nodes in the Android malware, compared to the IoT malware, highlighting a higher order of complexity. We implement a Machine Learning based classifiers to detect IoT malware from benign ones, and achieved an accuracy of 97.9% using Random Forests (RF).
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.