Condensed Matter > Strongly Correlated Electrons
[Submitted on 26 Mar 2019]
Title:Magnetic competition induced colossal magnetoresistance in n-type HgCr2Se4 under high pressures
View PDFAbstract:The n-type HgCr2Se4 exhibits a sharp semiconductor-to-metal transition (SMT) in resistivity accompanying the ferromagnetic order at TC = 106 K. Here, we investigate the effects of pressure and magnetic field on the concomitant SMT and ferromagnetic order by measuring resistivity, dc and ac magnetic susceptibility, as well as single-crystal neutron diffraction under various pressures up to 8 GPa and magnetic fields up to 8 T. Our results demonstrate that the ferromagnetic metallic ground state of n-type HgCr2Se4 is destabilized and gradually replaced by an antiferromagnetic, most likely a spiral magnetic, and insulating ground state upon the application of high pressure. On the other hand, the application of external magnetic fields can restore the ferromagnetic metallic state again at high pressures, resulting in a colossal magnetoresistance (CMR) as high as ~ 3 * 10^11 % under 5 T and 2 K at 4 GPa. The present study demonstrates that n-type HgCr2Se4 is located at a peculiar critical point where the balance of competion between ferromagnetic and antiferromagnetic interactions can be easily tipped by the external stimuli, providing a new platform for achieving CMR in a single-valent system.
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.