Astrophysics > Earth and Planetary Astrophysics
[Submitted on 27 Mar 2019]
Title:Kernel phase imaging with VLT/NACO: high-contrast detection of new candidate low-mass stellar companions at the diffraction limit
View PDFAbstract:Directly imaging exoplanets is challenging because quasi-static phase aberrations in the pupil plane (speckles) can mimic the signal of a companion at small angular separations. Kernel phase, which is a generalization of closure phase (known from sparse aperture masking), is independent of pupil plane phase noise to second order and allows for a robust calibration of full pupil, extreme adaptive optics observations. We applied kernel phase combined with a principal component based calibration process to a suitable but not optimal, high cadence, pupil stabilized L' band ($3.8~\mu\text{m}$) data set from the ESO archive. We detect eight low-mass companions, five of which were previously unknown, and two have angular separations of $\sim0.8$-$1.2~\lambda/D$ (i.e. $\sim80$-$110~\text{mas}$), demonstrating that kernel phase achieves a resolution below the classical diffraction limit of a telescope. While we reach a $5\sigma$ contrast limit of $\sim1/100$ at such angular separations, we demonstrate that an optimized observing strategy with more diversity of PSF references (e.g. star-hopping sequences) would have led to a better calibration and even better performance. As such, kernel phase is a promising technique for achieving the best possible resolution with future space-based telescopes (e.g. JWST), which are limited by the mirror size rather than atmospheric turbulence, and with a dedicated calibration process also for extreme adaptive optics facilities from the ground.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.