Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 30 May 2019]
Title:Tunable Klein-like tunneling of high-temperature superconducting pairs into graphene
View PDFAbstract:Superconductivity can be induced in a normal material via the leakage of superconducting pairs of charge carriers from an adjacent superconductor. This so-called proximity effect is markedly influenced by graphene unique electronic structure, both in fundamental and technologically relevant ways. These include an unconventional form of the leakage mechanism the Andreev reflection and the potential of supercurrent modulation through electrical gating. Despite the interest of high-temperature superconductors in that context, realizations have been exclusively based on low-temperature ones. Here we demonstrate gate-tunable, high-temperature superconducting proximity effect in graphene. Notably, gating effects result from the perfect transmission of superconducting pairs across an energy barrier -a form of Klein tunneling, up to now observed only for non-superconducting carriers- and quantum interferences controlled by graphene doping. Interestingly, we find that this type of interferences become dominant without the need of ultra-clean graphene, in stark contrast to the case of low-temperature superconductors. These results pave the way to a new class of tunable, high-temperature Josephson devices based on large-scale graphene.
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.