Computer Science > Machine Learning
[Submitted on 20 Jun 2019 (v1), last revised 9 Jul 2019 (this version, v2)]
Title:Near-optimal Bayesian Solution For Unknown Discrete Markov Decision Process
View PDFAbstract:We tackle the problem of acting in an unknown finite and discrete Markov Decision Process (MDP) for which the expected shortest path from any state to any other state is bounded by a finite number $D$. An MDP consists of $S$ states and $A$ possible actions per state. Upon choosing an action $a_t$ at state $s_t$, one receives a real value reward $r_t$, then one transits to a next state $s_{t+1}$. The reward $r_t$ is generated from a fixed reward distribution depending only on $(s_t, a_t)$ and similarly, the next state $s_{t+1}$ is generated from a fixed transition distribution depending only on $(s_t, a_t)$. The objective is to maximize the accumulated rewards after $T$ interactions. In this paper, we consider the case where the reward distributions, the transitions, $T$ and $D$ are all unknown. We derive the first polynomial time Bayesian algorithm, BUCRL{} that achieves up to logarithm factors, a regret (i.e the difference between the accumulated rewards of the optimal policy and our algorithm) of the optimal order $\tilde{\mathcal{O}}(\sqrt{DSAT})$. Importantly, our result holds with high probability for the worst-case (frequentist) regret and not the weaker notion of Bayesian regret. We perform experiments in a variety of environments that demonstrate the superiority of our algorithm over previous techniques.
Our work also illustrates several results that will be of independent interest. In particular, we derive a sharper upper bound for the KL-divergence of Bernoulli random variables. We also derive sharper upper and lower bounds for Beta and Binomial quantiles. All the bound are very simple and only use elementary functions.
Submission history
From: Aristide Charles Yedia Tossou [view email][v1] Thu, 20 Jun 2019 06:32:36 UTC (4,905 KB)
[v2] Tue, 9 Jul 2019 21:47:50 UTC (4,914 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.