Computer Science > Databases
[Submitted on 23 Aug 2019]
Title:Efficient Join Processing Over Incomplete Data Streams (Technical Report)
View PDFAbstract:For decades, the join operator over fast data streams has always drawn much attention from the database community, due to its wide spectrum of real-world applications, such as online clustering, intrusion detection, sensor data monitoring, and so on. Existing works usually assume that the underlying streams to be joined are complete (without any missing values). However, this assumption may not always hold, since objects from streams may contain some missing attributes, due to various reasons such as packet losses, network congestion/failure, and so on. In this paper, we formalize an important problem, namely join over incomplete data streams (Join-iDS), which retrieves joining object pairs from incomplete data streams with high confidences. We tackle the Join-iDS problem in the style of "data imputation and query processing at the same time". To enable this style, we design an effective and efficient cost-model-based imputation method via deferential dependency (DD), devise effective pruning strategies to reduce the Join-iDS search space, and propose efficient algorithms via our proposed cost-model-based data synopsis/indexes. Extensive experiments have been conducted to verify the efficiency and effectiveness of our proposed Join-iDS approach on both real and synthetic data sets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.