Computer Science > Multiagent Systems
[Submitted on 8 Sep 2019 (v1), last revised 4 Apr 2020 (this version, v3)]
Title:Bi-level Actor-Critic for Multi-agent Coordination
View PDFAbstract:Coordination is one of the essential problems in multi-agent systems. Typically multi-agent reinforcement learning (MARL) methods treat agents equally and the goal is to solve the Markov game to an arbitrary Nash equilibrium (NE) when multiple equilibra exist, thus lacking a solution for NE selection. In this paper, we treat agents \emph{unequally} and consider Stackelberg equilibrium as a potentially better convergence point than Nash equilibrium in terms of Pareto superiority, especially in cooperative environments. Under Markov games, we formally define the bi-level reinforcement learning problem in finding Stackelberg equilibrium. We propose a novel bi-level actor-critic learning method that allows agents to have different knowledge base (thus intelligent), while their actions still can be executed simultaneously and distributedly. The convergence proof is given, while the resulting learning algorithm is tested against the state of the arts. We found that the proposed bi-level actor-critic algorithm successfully converged to the Stackelberg equilibria in matrix games and find an asymmetric solution in a highway merge environment.
Submission history
From: Haifeng Zhang [view email][v1] Sun, 8 Sep 2019 17:10:50 UTC (1,633 KB)
[v2] Tue, 24 Mar 2020 09:18:05 UTC (1,666 KB)
[v3] Sat, 4 Apr 2020 09:52:55 UTC (1,667 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.