Computer Science > Machine Learning
[Submitted on 25 Sep 2019 (v1), last revised 21 Jun 2020 (this version, v3)]
Title:Compression based bound for non-compressed network: unified generalization error analysis of large compressible deep neural network
View PDFAbstract:One of the biggest issues in deep learning theory is the generalization ability of networks with huge model size. The classical learning theory suggests that overparameterized models cause overfitting. However, practically used large deep models avoid overfitting, which is not well explained by the classical approaches. To resolve this issue, several attempts have been made. Among them, the compression based bound is one of the promising approaches. However, the compression based bound can be applied only to a compressed network, and it is not applicable to the non-compressed original network. In this paper, we give a unified frame-work that can convert compression based bounds to those for non-compressed original networks. The bound gives even better rate than the one for the compressed network by improving the bias term. By establishing the unified frame-work, we can obtain a data dependent generalization error bound which gives a tighter evaluation than the data independent ones.
Submission history
From: Taiji Suzuki [view email][v1] Wed, 25 Sep 2019 03:43:14 UTC (705 KB)
[v2] Thu, 26 Sep 2019 05:40:09 UTC (131 KB)
[v3] Sun, 21 Jun 2020 16:39:16 UTC (107 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.