Mathematics > Numerical Analysis
[Submitted on 10 Oct 2019]
Title:A full multigrid multilevel Monte Carlo method for the single phase subsurface flow with random coefficients
View PDFAbstract:The subsurface flow is usually subject to uncertain porous media structures. In most cases, however, we only have partial knowledge about the porous media properties. A common approach is to model the uncertain parameters of porous media as random fields, then the statistical moments (e.g. expectation) of the Quantity of Interest(QoI) can be evaluated by the Monte Carlo method. In this study, we develop a full multigrid-multilevel Monte Carlo (FMG-MLMC) method to speed up the evaluation of random parameters effects on single-phase porous flows. In general, MLMC method applies a series of discretization with increasing resolution and computes the QoI on each of them. The effective variance reduction is the success of the method. We exploit the similar hierarchies of MLMC and multigrid methods and obtain the solution on coarse mesh $Q^c_l$ as a byproduct of the full multigrid solution on fine mesh $Q^f_l$ on each level $l$. In the cases considered in this work, the computational saving due to the coarse mesh samples saving is $20\%$ asymptotically. Besides, a comparison of Monte Carlo and Quasi-Monte Carlo (QMC) methods reveals a smaller estimator variance and a faster convergence rate of the latter approach in this study.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.