Electrical Engineering and Systems Science > Signal Processing
[Submitted on 21 Nov 2019 (v1), last revised 20 Aug 2020 (this version, v3)]
Title:A Machine Learning-enhanced Robust P-Phase Picker for Real-time Seismic Monitoring
View PDFAbstract:Identifying the arrival times of seismic P-phases plays a significant role in real-time seismic monitoring, which provides critical guidance for emergency response activities. While considerable research has been conducted on this topic, efficiently capturing the arrival times of seismic P-phases hidden within intensively distributed and noisy seismic waves, such as those generated by the aftershocks of destructive earthquakes, remains a real challenge since most common existing methods in seismology rely on laborious expert supervision. To this end, in this paper, we present a machine learning-enhanced framework based on ensemble learning strategy, EL-Picker, for the automatic identification of seismic P-phase arrivals on continuous and massive waveforms. More specifically, EL-Picker consists of three modules, namely, Trigger, Classifier, and Refiner, and an ensemble learning strategy is exploited to integrate several machine learning classifiers. An evaluation of the aftershocks following the MS 8.0 Wenchuan earthquake demonstrates that EL-Picker can not only achieve the best identification performance but also identify 120% more seismic P-phase arrivals as complementary data. Meanwhile, experimental results also reveal both the applicability of different machine learning models for waveforms collected from different seismic stations and the regularities of seismic P-phase arrivals that might be neglected during manual inspection. These findings clearly validate the effectiveness, efficiency, flexibility and stability of EL-Picker.
Submission history
From: Hengshu Zhu [view email][v1] Thu, 21 Nov 2019 04:03:03 UTC (4,900 KB)
[v2] Wed, 19 Aug 2020 09:12:04 UTC (9,258 KB)
[v3] Thu, 20 Aug 2020 07:28:25 UTC (18,517 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.