Mathematics > Numerical Analysis
[Submitted on 30 Jan 2020]
Title:Algebraic multigrid preconditioning of the Hessian in PDE-constrained optimization
View PDFAbstract:We construct an algebraic multigrid (AMG) based preconditioner for the reduced Hessian of a linear-quadratic optimization problem constrained by an elliptic partial differential equation. While the preconditioner generalizes a geometric multigrid preconditioner introduced in earlier works, its construction relies entirely on a standard AMG infrastructure built for solving the forward elliptic equation, thus allowing for it to be implemented using a variety of AMG methods and standard packages. Our analysis establishes a clear connection between the quality of the preconditioner and the AMG method used. The proposed strategy has a broad and robust applicability to problems with unstructured grids, complex geometry, and varying coefficients. The method is implemented using the Hypre package and several numerical examples are presented.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.