Computer Science > Human-Computer Interaction
[Submitted on 22 Apr 2020]
Title:Interweaving Multimodal Interaction with Flexible Unit Visualizations for Data Exploration
View PDFAbstract:Multimodal interfaces that combine direct manipulation and natural language have shown great promise for data visualization. Such multimodal interfaces allow people to stay in the flow of their visual exploration by leveraging the strengths of one modality to complement the weaknesses of others. In this work, we introduce an approach that interweaves multimodal interaction combining direct manipulation and natural language with flexible unit visualizations. We employ the proposed approach in a proof-of-concept system, DataBreeze. Coupling pen, touch, and speech-based multimodal interaction with flexible unit visualizations, DataBreeze allows people to create and interact with both systematically bound (e.g., scatterplots, unit column charts) and manually customized views, enabling a novel visual data exploration experience. We describe our design process along with DataBreeze's interface and interactions, delineating specific aspects of the design that empower the synergistic use of multiple modalities. We also present a preliminary user study with DataBreeze, highlighting the data exploration patterns that participants employed. Finally, reflecting on our design process and preliminary user study, we discuss future research directions.
Submission history
From: Arjun Srinivasan [view email][v1] Wed, 22 Apr 2020 07:53:01 UTC (3,809 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.